@article{nokey,
title = {Superconducting spin reorientation in spin-triplet multiple superconducting phases of UTe2},
author = {K Kinjo and H Fujibayashi and H Matsumura and F Hori and S Kitagawa and K Ishida and Y Tokunaga and H Sakai and S Kambe and A Nakamura and Y Shimizu and Y Homma and D Li and F Honda and D Aoki},
url = {https://arxiv.org/abs/2307.15784},
doi = {10.1126/sciadv.adg2736},
year = {2023},
date = {2023-07-28},
urldate = {2023-07-28},
journal = {Science Advances},
volume = {9},
pages = {adg2736},
abstract = {Superconducting (SC) state has spin and orbital degrees of freedom, and spin-triplet superconductivity shows multiple SC phases because of the presence of these degrees of freedom. However, the observation of spin-direction rotation occurring inside the SC state (SC spin rotation) has hardly been reported. Uranium ditelluride, a recently found topological superconductor, exhibits various SC phases under pressure: SC state at ambient pressure (SC1), high-temperature SC state above 0.5 gigapascal (SC2), and low-temperature SC state above 0.5 gigapascal (SC3). We performed nuclear magnetic resonance (NMR) and ac susceptibility measurements on a single-crystal uranium ditelluride. The b axis spin susceptibility remains unchanged in SC2, unlike in SC1, and decreases below the SC2-SC3 transition with spin modulation. These unique properties in SC3 arise from the coexistence of two SC order parameters. Our NMR results confirm spin-triplet superconductivity with SC spin parallel to b axis in SC2 and unveil the remaining of spin degrees of freedom in SC uranium ditelluride.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}