2016/10/31 (Mon.)

1. YBCO の合成(3) ~本焼き後~

計量

- 200℃で炉からるつぼを取り出して、「るつぼ+試料+ふた」「るつぼ+試料」の質量を量る。
- るつぼのみ・ふたのみの質量も量り、質量変化を記録しておく。(ただし、るつぼには物質がこびりついたり しているため、この値は参考程度)
- <u>宿題!</u> δの値を算出しておくこと。→ 中間発表会で説明してもらいます。

ペレットの分離・保存

- ペレットの様子を観察し、ノートに記録しておく。必要に応じて写真なども取る。
- ペレット同士がくっついているので、カッター・ピンセットなどを用いて分離する。なるべく割らないように注意。 紙の上やビニール袋の中で行い、なるべく試料をなくさないように。
- 試料用のプラスチックケースにペレットを入れる。ベッドは分けてケースに入れる。プラスチックケースには 年度・前期/後期・グループ名・試料名などを書いたラベルを貼っておく。
- プラスチックケースはパッキンつきランチボックスに入れておく。YBCO は水分に若干弱いので、シリカゲル (除湿剤)を一緒に入れる。
- ランチボックスにも年度と前期/後期を記入しておく。

片づけ

- るつぼとふたは TA が洗う(濃硝酸→1300°Cで空焼き)。
- 2. 液体窒素を使用する上での注意

液体窒素を使用する上での注意事項

(1) 低温 → 凍傷に注意: 皮手袋を着用する

特に注意すべき点:

目に直接液体窒素が入る → 目は遠く高く 冷えた金属に触る 液体窒素が衣服にしみこむ

(2) 液体 → 気化すると急激に膨張 液体窒素を密閉しない 酸欠に注意(要換気・液に顔を近づけすぎない)

3. 超伝導性の確認
(1) プラスチックのトレーの中に銅のブロックを置き、液体窒素を注ぐ。
→ 銅の周りの液体窒素の沸騰の様子はどのように変化するか。
A. 初めは激しく沸騰し、徐々におさまっていく。
B. 初めは静かに沸騰し、一旦激しく沸騰してからおさまる。
C. 初めから最後まで沸騰の様子は変化しない。
(2) 銅のブロックが 77 K まで冷えたら、上に YBCO のペレットを乗せる。さらに上に強力磁石を乗せる。
→ どのくらい浮上するか? 浮上した距離を計測する。
(3) 一旦 YBCO を取り出して超伝導を壊す。今度は上に磁石を置いてから銅のブロックの上に磁石ごと乗せる。 → どのくらい浮上するか? 浮上した距離を計測する。
(4) そのほか、磁石の N 極と S 極を交換してみる、回転させる、などいろいろやってみる。
(5) 使用した磁石の質量を測っておく。

4. 磁気浮上の原理	
〇マイスナー効果 = 超伝導体の内部の磁束密度がゼロになる性質	
→ 磁石に対して常にする	
〇磁気浮上はマイスナー効果だけでは不十分	
→ 浮上してもに浮き続けるには別の力が必要	
〇第 II 種超伝導体を下部臨界磁場 Hc1 以上、上部臨界磁場 Hc2 以下の磁場中に置くと	
磁束は化して侵入する(=混合状態)	
→ その大きさ Φ ₀ = =Wb	
【原理】	
超伝導:試料全体にわたって全電子が一つの波動関数に従う状態	· · · · · · · · · · · · · · · · · · ·
※波動関数 →との自由度を持つ複素関数	
波動関数の性	
→任意の閉経路での位相変化□φ の積分値はのに限られ。	
波動関数の位相部分と電流およびベクトルポテンシャルの関係:	
上の式を J = 0 となる適当な閉経路で一周積分すると、	

〇第2種超伝導体に侵入した磁束量子の特徴

中心では______は定義できず、______はゼロ。

(数学的な特異点)

※右図は磁束断面周りの超伝導波動関数の

振幅|火|(縦軸)と位相(色)を表したもの。

○磁束の侵入パターンのクイズ

不純物など超伝導になりにくい部分がある場合、磁束はどのように侵入するか?

〇磁気浮上の原理

量子化して超伝導体内に侵入した磁束が不純物などにされる

→ 磁束が移動する際に が必要になるため、磁場分布変化を 力が働く

本日のまとめ:

磁気浮上は、マイスナー効果・磁束量子化・ピン止め効果など、超伝導の重要な性質が 織りなす現象

Oおまけ

- 1. ピン止めの超強力な例を見てみましょう。
- 2. 超伝導体の上で磁石を回したりできたと思います。また、レールの上を超伝導体が走っていくデモ実験があります(「Magnetic levitation train」などで検索)。これらは上記の原理で説明できるでしょうか。
- 3. マイスナー効果だけで浮上させる例も見てみましょう。

"Laboratory Work in Physics B4" -- Handout No.4

Your name (______) Oct 31, 2016 (Mon.)

1. Synthesis of YBCO (3) - After the second heating

Weighing

- Take the crucible out from the furnace at 200°C. Weigh "crucible + sample + cap" and "crucible + sample".
- Weigh also the crucible only and cap only. (Nevertheless, these values are not probably reliable, since the weight of these may have changed by stuck materials.
- HOMEWORK: Calculate the value of $\delta \rightarrow$ This should be explained in the mid-term presentation.

Separating and storing pellets

- Observe how the pellets look. Write down to the lab notebook anything you noticed. Take photos if necessary.
- Since pellets are stuck each other, separate them by using a utility knife and tweezers. Try not to break the pellets. This should be done on a paper or in a plastic bag to avoid loss of samples.
- Put pellets to small plastic cases. Store the "bed" pellet separately. Put labels with information such as "year", "1st/2nd semester", "group", "material name (e.g. pure YBCO)".
- Plastic cases should be stored in a "lunch box" with rubber seal. Since YBCO gets degraded by moisture, pellets should be stored together with silica gel beads.
- Write "year" and "1st/2nd semester" onto the "lunch box"

Cleaning

Crucibles and caps will be cleaned by TA (Nitric acid → bake at 1300°C)

2. Caution for the use of liquid nitrogen

Cautions

(1) Low temperature → Be careful for frostbite: use leather gloves Pay more attention:

Don't allow LN₂ to go into your eyes. \rightarrow Keep your eyes far and high Don't touch cooled metals.

Don't allow LN₂ to soak into your clothes.

(2) Liquid → Rapid and vast increase of volume when evaporates Don't seal LN₂ into an air-tight container. Be careful for oxygen deficiency (Keep air ventilation, do not bring your face too close)

 3. Quick check of superconductivity (1) Put a copper block in a plastic tray. Pour LN₂. → How does the evaporation of LN2 change? A. The evaporation is strong and then gets weaker. B. The evaporation is weak, gets stronger, and then becomes weak in equilibrium. C. The evaporation strength does not change.
(2) Once the copper block is cooled to 77 K, put a YBCO pellet. Then put a Nd-based magnet. → How high does the magnet levitate? Measure the height.
 (3) Take the YBCO out and warm up to kill superconductivity. Next, first put a magnet then cool the YBCO and magnet together by putting on the copper block. → How high does the magnet levitate? Measure the height.
(4) Try many, such as, exchanging poles of the magnet, rotating magnet, etc.
(5) Measure the weight of the magnet.

4. Mechanism of the magnetic levitation	ППППП
OMeissner effect = The magnetic flux density <i>B</i> = 0 inside a superconductor	
→ A superconductor and a magnet always	
OHowever, the Meissner effect alone cannot explain the levitation	
→ For levitation, an additional force is required.	
OWhen a type-II superconductor is placed in a magnetic field between the lower critical field	l H _{c1} and the
upper critical field H_{c2}	* *
Penetration of magnetic flux (= the mixed state)	
\rightarrow Its magnitude: ϕ_0 = =Wb	
【Principle of the quantization】	
Superconductivity: All electrons in the sample obey one wavefunction.	
$ imes$ Wavefunction $ o$ Complex function with degrees of the freedom and _	
of the wavefunction (WF)	
$ ightarrow$ Integration of $\delta arphi$ along any closed path is an multiple of	
Relation between the phase of the WF, the electric current <i>J</i> , and the vector potential <i>A</i> :	
By integrating the equation above along a closed path with $J = 0$, we have	

OFeatures of quantized vortices:

At the center, ____ cannot be defined, ____ is zero

(Singular point in a mathematical point of view)

%The right figure illustrates the amplitude $|\psi|$ (height) and the phase (color) of the superconducting WF around a vortex

OQuiz:

How do vortices penetrate a superconductor with impurities, in which superconductivity is unfavored.

OMechanism of the magnetic levitation

Quantized vortices penetrating a superconductor are _____ at impurities

→ Some _____ is required to move a vortex. This leads to a force to _____ change in the magnetic-field distribution.

Summary:

Magnetic levitation is realized due to a combination of important properties of superconductivity, such as the Meissner effect, flux quantization, and vortex pinning.

ONotes:

- 1. Let's see the behavior of a superconductor with much stronger pinning.
- 2. Can you explain why a levitating magnet can rotate on a superconductor? Also, can you explain a famous demonstration of running a superconductor on a rail of magnets (search for "Magnetic levitation train").
- 3. Let's see levitation only due to the Meissner effect.

Appendix -- Japanese-English list of technical words for deeper communication!

カッターナイフ	cutter knife	utility knife
凍傷	tou-shou	frostbite
酸欠	san-ketsu	oxygen deficiency
換気	kanki	ventilation
磁気浮上	jiki-fujo	magnetic levitation
磁束	jisoku	magnetic flux
磁束密度	jisoku-mitsudo	magnetic flux density
渦糸	uzu-ito	vortex (pl. vortices)
不純物	fujun-butsu	impurity
一価性	ikka-sei	single-valuedness