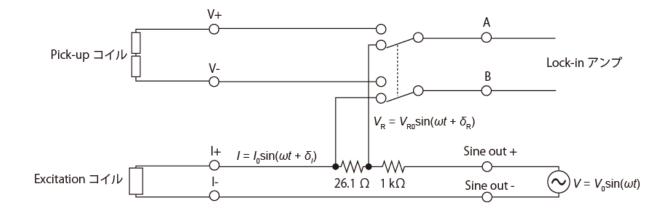
課題演習 B4 2018 前期 資料 No.7 名前(

2018/05/28 (Mon.)

)

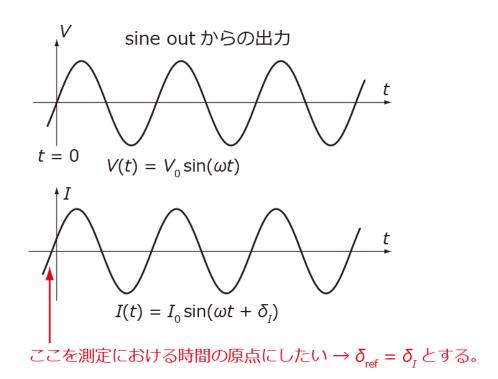
1. 測定の準備

測定機器の確認


● 測定機器の機種やそれらの間の配線などを確認する。

	製造元	型番など
直流電流・電圧源(抵抗試料電流印加用)	社製	
マルチメーター(抵抗試料電圧測定用)	社製	
マルチメーター(温度計抵抗測定用)	社製	
ロックインアンプ(交流磁化率測定用)	社製	

(配線図 → ノートにも書くこと)


測定用 BOX の確認

● 測定用ボックスを開けてみて、内部の配線が以下のようになっていることを確認する。

このボックスの説明

- ロックインアンプの Sine out からは $V(t) = V_0 \sin(\omega t)$ の交流電圧が出る。(電流でないことに注意!) それに大きな抵抗 $(1 k\Omega)$ を噛ませて、一定電流 $I = I_0 \sin(\omega t + \delta_l)$ としている。(温度を下げることによる導線の抵抗の変化は $1 k\Omega$ よりも十分小さいので、ほぼ電流値 I_0 は温度に依らなくなる。) ここで、ほぼ $I_0 = V_0/R$ $(R = 1 k\Omega)$ であるが、正確なところはわからない。また、微小な Phase shift δ_l がある。
- 従って、測定前に ½ δ δ を知る必要がある。(というか、位相に関しては、「電流の位相を原点にして」測りたい)

そのために、抵抗の両端の電圧は電流に対してしないことを利用する。以下の手順で行う。

- ① 周波数を 887 Hz に、Vout を適当な値(1 V 程度)にする。(「Freq」ボタンや「Vout」ボタンを押して、ダイヤルを回す)
- ② 測定 Box のスイッチを「26.1 オーム」側に倒す。
- ③ 「Phase」を変化させ、 V_v がゼロになるようにする。(「Phase」ボタンを押してダイヤルを回す)
- ④ このときの V_x と Phase を記録する。ここで、 $I_0 =$ ______となり、この値は Vout を 1 k Ω で割った値に近くなるはず。また、 θ は数度程度であるはず。

★もし、 I_0 や Phase が大幅にずれるようであれば、何かがおかしい。(回路が切れている、グラウンドにショートしているなど) \rightarrow テスタで回路をチェックするべき。

⑤ 測定 Box のスイッチを「Sample」側に倒す。

ちなみに、②~③を自動でやってくれる($V_v = 0$ となる Phase を勝手に探す)のが Auto Phase である。

測定試料の準備

● 試料が劣化していないかどうか、IC ピン端子間の抵抗で確認する。表を作ってノートに記録しておく。

	+	 -	V+	V-
I-				
V+				
V-				

- OK だったら、電気抵抗用試料をプローブに取り付ける。IC ピンをプローブの白いピンに挿す。
- 交流磁化率用試料をコイルに入れる。片方のピックアップコイルにのみ試料が入るように注意。銅線をねじでプローブに固定する。(熱接触を良くするため)
- ロックインアンプをプローブにつなぐ。
- 測定ボックスのスイッチを標準抵抗側にし、出力電圧、周波数を設定する。Auto Phase ボタンを押す(\rightarrow 「位相の原点」を電流位相に合わせる)。その時の Phase と、 V_X , V_Y の値を記録しておく。
- スイッチをコイル側に切り替え、*V_x*, *V_y*を記録する。
- 試料の逆側のピックアップコイルに磁性体を入れ、V_x, V_yの変化を記録する。
- プローブ先端にカバーをかぶせてねじ止めする。
- 測定用ケーブルをいったん取り外し、プローブをガラスデュワーに入れる。デュワーを割らないように注意!
- フランジをねじ止めする。均等に締め付ける。
- プローブに測定用ケーブルを取り付ける。
- バナナ端子付きケーブルや同軸ケーブルを配線する。

電気抵抗のチェック

- 電流源から直流電流を出力し、試料の電圧を測定する。
- 電流を反転させ、同様に電圧を測定する。
- 以上の作業をいくつかの電流値に対して行い、(V+-V-)/2 がオーム則に従っていることを確かめる。 (ノートに記録すること)

電流	V ₊	V_	$(V_{+} - V_{-}) / 2$

交流磁化率のチェック

- 測定ボックスのスイッチを電気抵抗側にし、出力電圧、周波数を設定する。Auto Phase ボタンを押す(\rightarrow 「位相の原点」を電流位相に合わせる)。その時の Phase と、 V_x , V_y の値を記録しておく。
- スイッチをコイル側に切り替え、*V_x*, *V_y*を記録する。
- 以上の測定をいくつかの出力電圧に対して行う。

(ノートに記録すること)

周波数:	/II //X <i>3</i> X ·
------	----------------------

出力電圧	V _x (電気抵抗)	<i>V_y</i> (電気抵抗)	Phase	V _x (コイル)	<i>V_y</i> (コイル)

測定開始

- 電気抵抗用電流源の電流値を設定し、出力する。(上でオーム則が成立していると確かめた範囲内の電流値を使う)。使う電流値はノートにきちんと記録しておくこと!
- Lock-in アンプの出力電圧と周波数・位相を設定する。上で位相をチェックしたいずれかの値を使う。使う出力電圧などはノートにきちんと記録しておくこと!
- 測定用プログラムを走らせる。データの保存をスタートする。ファイルに記録されていることを確かめる。
- 液体窒素を徐々にガラスデュワーに入れていく。入れ終わったらタオルでガラスデュワーの開口部を覆って おく。