超伝導体におけるマヨラナ粒子 ～実現と検出への展望～

藤本聡（京大理，4月より阪大基礎工）

Outline

1. Introduction
(i) Basic features of Majorana fermions in topological superconductors
(ii) Possible realization
2. Why interesting
~Exotic phenomena and possible experimental-detection scheme ~
\checkmark (i) Non-Abelian statistics
$\sqrt{ }$ (ii) Non-local correlation and "teleportation"
(iii) Majorana fermion as "fractionalization" of electron
(iv) Thermal responses

Majorana fermions in superconductors : Introduction

Majorana fermion : particle = anti-particle!

$$
\gamma^{\dagger}=\gamma
$$

Ettore Majorana c.f. neutrino?

Majorana fermion in SC: equal-weight superposition of electron and hole
Bogoliubov quasiparticle $\gamma^{\dagger}=\int d \boldsymbol{r}\left[u_{E}(\boldsymbol{r}) c^{\dagger}(\boldsymbol{r})+v_{E}(\boldsymbol{r}) c(\boldsymbol{r})\right]$

Spinless p+ip SC

Bogoliubov quasiparticle $\gamma^{\dagger}=\int d \boldsymbol{r}\left[u_{E}(\boldsymbol{r}) c^{\dagger}(\boldsymbol{r})+v_{E}(\boldsymbol{r}) c(\boldsymbol{r})\right]$
Because of p-h symmetry of BCS Hamiltonian

$$
\Gamma \hat{\mathcal{H}} \Gamma^{-1}=-\hat{\mathcal{H}}^{*} \quad \Gamma=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad \begin{gathered}
\text { N.B. } \\
\Gamma^{2}=1
\end{gathered}
$$

if $\hat{\mathcal{H}} \phi=E \phi$ then $\hat{\mathcal{H}} \Gamma \phi^{*}=-E \Gamma \phi^{*} \quad \phi^{T}=(u, v)$
\rightarrow If there is only one independent zero energy solution of BdG eq.

$$
\phi=\Gamma \phi^{*} \Rightarrow u_{0}^{*}=v_{0} \Rightarrow \gamma^{\dagger}=\gamma
$$

Non-degenerate zero energy Bogoliubov quasiparticle is Majorana !! equal-weight superposition of electron and hole !!

This argument also applies to spin-triplet SC, spin-singlet with SO int. etc. (class D, DIII, BDI)

How about the case that zero-energy modes are degenerate?

SU(2) spin symmetry implies two degenerate zero-energy states, if they exist

$$
\left.\begin{array}{cc}
\text { class C, CI, (spin-singlet SC) } & \begin{array}{c}
\text { SU(2) spin symmetry implies two degenerate } \\
\text { zero-energy states, if they exist }
\end{array} \\
\gamma_{1}=\int d r\left[u_{\uparrow}(r) c_{\uparrow}(r)-v_{\downarrow}(r) c_{\downarrow}^{\dagger}(r)\right] & \gamma_{2}=\int d r\left[u_{\downarrow}(r) c_{\downarrow}(r)+v_{\uparrow}(r) c_{\uparrow}^{\dagger}(r)\right] \\
\phi_{1}^{T}=\left(u_{\uparrow}, 0,0,-v_{\downarrow}\right) & \phi_{2}^{T}=\left(0, u_{\downarrow}, v_{\uparrow}, 0\right)
\end{array}\right\} \begin{gathered}
\text { p-h conjugate } \\
\left(\Gamma \phi_{1}\right)^{* T}=\left(0, i v_{\downarrow}^{*},-i u_{\uparrow}^{*}, 0\right) \\
\text { p-h conjugate } \left.=\left(u_{\uparrow}, u_{\downarrow}, v_{\uparrow},-v_{\downarrow}\right)\right) \\
\left(\Gamma \phi_{2}\right)^{* T}=\left(-i v_{\uparrow}^{*}, 0,0,-i u_{\downarrow}^{*}\right)
\end{gathered}
$$

If there are only two zero-energy modes,

$$
\begin{array}{rlr}
\Rightarrow \phi_{1} & =\left(\Gamma \phi_{2}\right)^{*} & \phi_{2}=\left(\Gamma \phi_{1}\right)^{*} \\
\Rightarrow u_{\uparrow} & =-i v_{\uparrow}^{*} & \gamma_{1}^{\dagger}=i \gamma_{2} \\
u_{\downarrow} & =i v_{\downarrow}^{*} & \gamma_{2}^{\dagger}=i \gamma_{1}
\end{array}
$$

$$
\tilde{\gamma}_{1}=\frac{1}{2}\left(\gamma_{1}+i \gamma_{2}\right) \quad \tilde{\gamma}_{2}=\frac{1}{2 i}\left(\gamma_{1}-i \gamma_{2}\right) \quad \tilde{\gamma}_{1}^{\dagger}=\tilde{\gamma}_{1} \quad \tilde{\gamma}_{2}^{\dagger}=\tilde{\gamma}_{2}
$$

$$
\begin{aligned}
& \hat{\mathcal{H}} \phi=E \phi \\
& \hat{\mathcal{H}}(\Gamma \phi)^{*}=-E(\Gamma \phi)^{*} \\
& \Gamma=i\left(\begin{array}{cc}
0 & 1_{2 \times 2} \\
1_{2 \times 2} & 0
\end{array}\right) \begin{array}{l}
\text { N.B. } \\
\Gamma^{2}=-1
\end{array}
\end{aligned}
$$

equal-weight superposition of electron and hole !!

$$
\gamma^{\dagger}=\int d \boldsymbol{r}\left[u_{E}(\boldsymbol{r}) c^{\dagger}(\boldsymbol{r})+v_{E}(\boldsymbol{r}) c(\boldsymbol{r})\right]
$$

zero-energy Bogoliubov quasiparticle in SC

equal-weight superposition of electron and hole

$$
|u|=|v|
$$

Majorana edge state

2D top. SC

Majorana fermions with nonzero energy satisfy

$$
|u|=|v|
$$

Majorana condition for nonzero energy states

$$
\gamma_{k}^{\dagger}=\gamma_{-k}
$$

Bogoliubov q.p. with $|u|=|v|$ is Majorana

Anti-commutation relation of Majorana fields holds

$$
\begin{gathered}
\begin{array}{cccccc|}
\hline \circ & \circ & \gamma_{i} & \circ & \circ \\
\circ & \circ & \circ \gamma_{j} & \circ & \begin{array}{l}
\text { M.F. in vortex } \\
\text { core state }
\end{array} \\
\gamma_{i}^{2} & =1, \\
\gamma_{i} \gamma_{j} & =-\gamma_{j} \gamma_{i} & \text { for } i \neq j
\end{array}
\end{gathered}
$$

follow from

$$
\gamma_{i}=\sqrt{2} \sum_{\sigma} \int d \boldsymbol{r}\left[u_{i \sigma}(\boldsymbol{r}) \psi_{\sigma}(\boldsymbol{r})+u_{i \sigma}^{*}(\boldsymbol{r}) \psi_{\sigma}^{\dagger}(\boldsymbol{r})\right]
$$

$$
\left\{\psi(\boldsymbol{r}), \psi\left(\boldsymbol{r}^{\prime}\right)\right\}=0 \quad\left\{\psi(\boldsymbol{r}), \psi^{\dagger}\left(\boldsymbol{r}^{\prime}\right)\right\}=\delta\left(\boldsymbol{r}-\boldsymbol{r}^{\prime}\right)
$$

Topology and Majorana Fermion
$\begin{array}{ll}\Theta & \text { TRS } \\ \Xi & \text { PHS }\end{array}$
IS
vortex of 2D top. SC edge of 2D top. SC

	$d=1$	$d=2$	$d=3$
$D=0$	$\ldots m$		
$D=1$	$+\cdots$		

vortex of even-parity top. SC
odd-parity top. SCs may be advantageous for realizing and detecting topologically protected Majorana fermions.
crystalline symmetry (mirror, mirror +TRS, etc.) provides topological protection of M.F. even for trivial classes above
(Fang,Gilbert,Bernevig;Shiozaki, Sato)

Possible realization

2D class D with broken TRS

- $\mathrm{Sr}_{2} \mathrm{RuO}_{4}$ (Maeno et al.)
- spin-singlet SC with strong spin-orbit interaction and Zeeman fields
(Sato, Takahashi,S.F.; Sau et al.; Alicea; Luchyn et al.; Oreg et al.)

- Proximity-induced SC on surface of top. insulator (L. Fu, C. L. Kane)
(TRS must be broken by magnetic fields)
- spin-singlet SC coupled with spiral magnetic order
(Braunecker, Simon; Klinovaja et al.;
Vazifeh, Franz; Nakosai, Tanaka,Nagaosa)

class DIII with TRS

- Helium 3, B phase
- $\mathrm{Cu}_{x} \mathrm{Bi}_{2} \mathrm{Se}_{3} \quad$ (Fu, Berg; Sasaki et al.)

Why interesting
 ~ Exotic phenomena
 and possible detection scheme ~

Non-Abelian Statistics

Non-Abelian statistics

exchange (braiding) of particles is non-commutative !!

1D top. SC

Majorana end state

Majorana end state

Exchange (braiding) operation of Majorana zero modes

$$
\gamma_{i} \rightarrow \gamma_{j}, \quad \gamma_{j} \rightarrow-\gamma_{i}
$$

Sign change is not due to vortex, but due to Fermion-parity conservation !!
(Clarke, Sau, Tewari; Halperin et al.)

U_{12} : unitary operation for braiding of γ_{1} and γ_{2}

$$
s_{2} \gamma_{2}=U_{12} \gamma_{1} U_{12}^{\dagger} \quad s_{1} \gamma_{1}=U_{12} \gamma_{2} U_{12}^{\dagger}
$$

(G.S. is separated from excited states by finite energy gap)

$$
S_{1} \quad S_{2} \quad: \text { phase factor }
$$

From $s_{1}^{2} \gamma_{1}^{2}=s_{2}^{2} \gamma_{2}^{2}=1$ and $\begin{aligned} & \gamma_{1}^{2}=1 \\ & \gamma_{2}^{2}=1\end{aligned} \quad \longrightarrow s_{1}= \pm 1 \quad s_{2}= \pm 1$

$$
s_{2} \gamma_{2}=U_{12} \gamma_{1} U_{12}^{\dagger} \quad s_{1} \gamma_{1}=U_{12} \gamma_{2} U_{12}^{\dagger} \quad \begin{aligned}
& s_{1}= \pm 1 \\
& s_{2}= \pm 1
\end{aligned}
$$

How the occupation number of complex fermion $\psi_{12}=\left(\gamma_{1}+i \gamma_{2}\right) / 2$ is changed by braiding of Majorana zero modes ?

$$
\begin{aligned}
& n_{12}=\psi_{12}^{\dagger} \psi_{12}=\frac{1}{2}\left(1+i \gamma_{1} \gamma_{2}\right) \\
& U_{12} n_{12} U_{12}^{\dagger}=\frac{1}{2}+\frac{i}{2} U_{12} \gamma_{1} \gamma_{2} U_{12}^{\dagger}=\frac{1}{2}-\frac{i}{2} s_{1} s_{2} \gamma_{1} \gamma_{2}
\end{aligned}
$$

If γ_{1} and γ_{2} are sufficiently far from other Majorana fermions,
Fermion-parity of n_{12} is not changed by U_{12}

$$
\rightarrow \quad s_{1} s_{2}=-1
$$

$$
\gamma_{1} \rightarrow \gamma_{2}, \quad \gamma_{2} \rightarrow-\gamma_{1}
$$

non-Abelian statistics even without vortices

Braiding rule of Majorana zero modes :

$$
\gamma_{i} \rightarrow \gamma_{j}, \quad \gamma_{j} \rightarrow-\gamma_{i}
$$

Exchange (braiding) operator

$$
\begin{aligned}
U_{i j}= & \exp \left(-\frac{\pi}{4} \gamma_{i} \gamma_{j}\right)=\frac{1}{\sqrt{2}}\left(1-\gamma_{i} \gamma_{j}\right) \\
& U_{i j} \gamma_{i} U_{i j}^{\dagger}=\gamma_{j} \quad U_{i j} \gamma_{j} U_{i j}^{\dagger}=-\gamma_{i}
\end{aligned}
$$

Non-commutativity of exchange (braiding) operation

$$
\begin{aligned}
U_{i j} U_{j k}-U_{j k} U_{i j}=-\gamma_{i} \gamma_{k} & =i\left(2 n_{i k}-1\right) \\
& \neq 0
\end{aligned}
$$

Non-Abelian character!

How to detect Non-Abelian statistics ? (2D class D top. SC)

Interferometer experiment I

one-lead conductance measurement

State vector of injected electron (hole) : $\left|n_{12}\right\rangle \quad n_{12}=\psi^{\dagger} \psi$
γ_{1} travels around γ_{3} and returns to original position

$$
\left(U_{31}\right)^{2}|1\rangle=|0\rangle, \quad\left(U_{31}\right)^{2}|0\rangle=-|1\rangle
$$

Injected electron (hole) is perfectly converted to hole (electron) !!

n_{v} : odd injected electron (hole) is perfectly converted to hole (electron) !! (perfect Andreev reflection)
$|1\rangle \rightarrow|0\rangle$
$|0\rangle \rightarrow|1\rangle$

Current : $I=\frac{2 e}{h} \int_{0}^{e V} d E\left|s^{h e}\right|^{2} \quad$ Conductance : $G=2 \frac{e^{2}}{h}$
irrespective of coupling between lead and SC

$$
n_{v}: \text { even Conductance : } G=0 \quad \text { (no Majorana edge state) }
$$

However, for realistic systems with multiple channels in the lead, electrons not coupled to chiral Majorana mode lead to non-quantized conductance

How to detect Non-Abelian statistics ?

Interferometer experiment II
vanishing of $A B$ effect and $A C$ effect
(Grosfeld, Stern; Stern,Halperin; Bonderson, Kitaev, Shtengel)

$$
\psi^{\prime}=\frac{\gamma_{4}+i \gamma_{5}}{2} \psi=\frac{\gamma_{1}+i \gamma_{2}}{2}
$$

$\left(U_{31}\right)^{2}=\gamma_{1} \gamma_{3} \quad$ and $\left(U_{43}\right)^{2}=\gamma_{3} \gamma_{4}$ do not commute
\rightarrow dephasing of intereference
vanishing of $A B$ effect
(but experimental detection is not clear)
vanishing of AC effect (Grosfeld, Stern)

n_{v} : even

There is no M.F. in the center hole conventional AC effect :

$$
J_{v} \sim J_{v 0}+J_{v 1} \cos \left(2 \pi \frac{Q}{2 e}\right)
$$

n_{v} : odd

M.F. in the center hole AC effect disappears !!

$$
J_{v} \sim J_{v 0}
$$

Non-local correlation and "teleportation"

Splitting electrons into two M.F. and non-local correlation

Mode expansion of electron field :

$$
\psi_{\sigma}(x)=\sum_{i=1,2} u_{\sigma i}(x) \gamma_{i}+(\text { non-zero energy modes })
$$

correlation function of electrons :

$$
\begin{array}{ll}
\text { relation function of electrons : } & x \sim 0 \\
\left\langle\psi_{\sigma}(x) \psi_{\sigma}^{\dagger}(y)\right\rangle \sim u_{\sigma 1}(x) u_{\sigma 2}^{*}(y) \frac{\left\langle\gamma_{1} \gamma_{2}\right\rangle}{\searrow} \pm 1 & y \sim L
\end{array}
$$

non-zero even for $|x-y| \rightarrow \infty$
non-local correlation !!

$$
\begin{aligned}
& \psi=\frac{\gamma_{1}+i \gamma_{2}}{2} \bigcirc \xrightarrow[\text { electron }]{ } \circ \gamma_{1} \circ \gamma_{2} \text { non- } \\
& \text { (Bolech,Demler; } \\
& \text { Tewari et al.; } \\
& \text { Semenoff; } \\
& \text { Nilsson,Akhmerov, } \\
& \text { Beenakker) }
\end{aligned}
$$

non-local correlation independent of distance !!

$$
\left\langle\psi_{\sigma}(x) \psi_{\sigma}^{\dagger}(y)\right\rangle \sim u_{\sigma 1}(x) u_{\sigma 2}^{*}(y)\left\langle\gamma_{1} \gamma_{2}\right\rangle \neq 0 \quad \text { for } \quad|x-y| \rightarrow \infty
$$

"teleportation"?

However! problems arise!
(i) An electron detected at $x=L$ may come from breaking up a Cooper pair

no energy cost, because zero-energy Majorana end states exist
(ii) Coupling with leads or dots to probe "teleportation" breaks

Fermion-parity conservation

(ii) Coupling with leads or dots to probe "teleportation" breaks Fermion-parity conservation
metallic lead
$\rightarrow\left\langle\gamma_{1} \gamma_{2}\right\rangle=0$
vanishing correlation !!
(Bolech,Demler)

However, situation changes, when Fermion-parity degeneracy is lifted by overlap of Majorana-zero-mode wave functions.

If $E_{\text {split }}$ is larger than energy-scale of voltage applied on leads and T

$$
\begin{aligned}
& \left\langle\psi_{\sigma}(x) \psi_{\sigma}^{\dagger}(y)\right\rangle \sim u_{\sigma 1}(x) u_{\sigma 2}^{*}(y)\left\langle\gamma_{1} \gamma_{2}\right\rangle \neq 0 \\
& \text { non-Iocal correlation survives !! } \quad \begin{array}{l}
\text { (Nilsson,Akhmerov, } \\
\text { Beenakker) }
\end{array}
\end{aligned}
$$

Correlation does not depend on $|x-y|$ explicitly, though overlap does

Non-local correlation and "teleportation" in mesoscopic SC
1D top. SC taking account of charging energy $Q^{2} /\left(2 C_{0}\right) \quad$ (Liang Fu) and fluctuation of SC phase ϕ

AB effect with period $\frac{h}{e}$

$$
\text { (not } \left.\frac{h}{2 e}!!\right)
$$

even for sufficiently large length of SC wire

charging energy : $Q^{2} /\left(2 C_{0}\right)$
n_{0} : \# of electrons $\quad \gamma_{1}$ in SC

Fermion-parity degeneracy: $n_{12}=0$, or 1

$$
n_{12}=\psi_{12}^{\dagger} \psi_{12} \quad \psi_{12}=\left(\gamma_{1}+i \gamma_{2}\right) / 2
$$

$$
\left.\left[n_{12}, e^{ \pm i \frac{\phi}{2}}\right]= \pm e^{ \pm i \frac{\phi}{2}} \right\rvert\, \text { (c.f. }\left[S^{z}, S^{ \pm}\right]= \pm S^{ \pm} \text {) }
$$

$$
\begin{aligned}
& e^{i \frac{\phi}{2}}|0\rangle=|1\rangle, \quad e^{-i \frac{\phi}{2}}|1\rangle=|0\rangle, \\
& e^{i \frac{\phi}{2}}|1\rangle=0, \quad e^{-i \frac{\phi}{2}}|0\rangle=0 .
\end{aligned}
$$

$e^{ \pm i \frac{\text { 忠 }}{2}}$ raising and lowering n_{12}

Furthermore, $e^{ \pm i \frac{\phi}{2}}$ does not commute with Majorana fields γ_{1}, γ_{2}

$$
\left[\gamma_{1}, e^{ \pm i \frac{\phi}{2}}\right]= \pm(-1)^{n_{12}} \quad\left[\gamma_{2}, e^{ \pm i \frac{\phi}{2}}\right]=-i(-1)^{n_{12}}
$$

Tunneling of electrons from leads into SC via M.F.

Tunneling Hamiltonian at $\mathbf{x}=\mathbf{0}$ and L :

$$
\left.\begin{array}{rl}
H_{T}=\sum_{k, \sigma} & {\left[V_{k \sigma 1} c_{k \sigma}^{\dagger} \gamma_{1} e^{-i \frac{\phi}{2}}+V_{k \sigma 2} c_{k \sigma}^{\dagger} \gamma_{2} e^{-i \frac{\phi}{2}} \Rightarrow \sum_{k, \sigma} \sqrt{2}\left[V_{k \sigma 1} c_{k \sigma}^{\dagger} f-i(-1)^{n_{12}} V_{k \sigma 2} c_{k \sigma}^{\dagger} f\right.\right.} \\
& \left.+V_{k \sigma 1}^{*} \gamma_{1} c_{k \sigma} e^{i \frac{\phi}{2}}+V_{k \sigma 2}^{*} \gamma_{2} c_{k \sigma} e^{i \frac{\phi}{2}}\right] \quad
\end{array} \begin{array}{l}
k \sigma 1
\end{array} V_{k \sigma}^{*} c_{k \sigma}+i V_{k \sigma 2}^{*} f^{\dagger} c_{k \sigma}(-1)^{n_{12}}\right] .
$$

We introduce an operator:

$$
f=\frac{1}{\sqrt{2}} \gamma_{1} e^{-i \frac{\phi}{2}}, \quad f^{\dagger}=\frac{1}{\sqrt{2}} e^{i \frac{\phi}{2}} \gamma_{1}
$$

$$
\frac{1}{\sqrt{2}} \gamma_{2} e^{-i \frac{\phi}{2}}=-i(-1)^{n_{12}} f, \quad \frac{1}{\sqrt{2}} e^{i \frac{\phi}{2}} \gamma_{2}=i f^{\dagger}(-1)^{n_{12}}
$$

$$
f=\frac{1}{\sqrt{2}} \gamma_{1} e^{-i \frac{\phi}{2}}, \quad f^{\dagger}=\frac{1}{\sqrt{2}} e^{i \frac{\phi}{2}} \gamma_{1}
$$

really conventional

(complex) fermion or not?

$$
f f^{\dagger}+f^{\dagger} f=1
$$

However $f^{2}=0, \quad\left(f^{\dagger}\right)^{2}=0$ hold only under a certain condition we need finite overlap between two M.F.

$$
\begin{align*}
& e^{i \frac{\phi}{2}}|0\rangle=|1\rangle, \quad e^{-i \frac{\phi}{2}}|1\rangle=|0\rangle, \\
& e^{i \frac{\phi}{2}}|1\rangle=0, \quad e^{-i \frac{\phi}{2}}|0\rangle=0 . \\
& {\left[\gamma_{1}, e^{ \pm i \frac{\phi}{2}}\right]= \pm(-1)^{n_{12}}} \tag{O}\\
& {\left[\gamma_{2}, e^{ \pm i \frac{\phi}{2}}\right]=-i(-1)^{n_{12}}}
\end{align*}
$$

$$
\begin{aligned}
& f^{2}|0\rangle=0, \quad\left(f^{\dagger}\right)^{2}|0\rangle=0 \quad \checkmark \\
& f^{2}|1\rangle=-\frac{1}{2}|1\rangle \quad\left(f^{\dagger}\right)^{2}|1\rangle=-\frac{1}{2}|1\rangle
\end{aligned}
$$

When degeneracy is lifted by overlap, f is fermion within the space of $|0\rangle$

$$
f=\frac{1}{\sqrt{2}} e^{-i \frac{\phi}{2}} \gamma_{1}
$$

$$
f^{2}|1\rangle=0, \quad\left(f^{\dagger}\right)^{2}|1\rangle=0
$$

not grounded (with charging energy, phase fluctuation)

grounded

 (no charging energy, no phase fluctuation)

$$
\begin{aligned}
& \text { Tunneling Hamiltonian : } \\
& \begin{array}{l}
H_{T}=\sum_{k, \sigma} \sum_{i=1,2}\left[V_{k \sigma i} c_{k \sigma}^{\dagger} \gamma_{i} e^{-i \phi / 2}+\text { h.c. }\right] \\
=\sum_{k, \sigma} \sqrt{2}\left[V_{k \sigma 1} c_{k \sigma}^{\dagger} f-i(-1)^{n_{12}} V_{k \sigma 2} c_{k \sigma}^{\dagger} f\right. \\
\left.\quad+V_{k \sigma 1}^{*} f^{\dagger} c_{k \sigma}+i V_{k \sigma 2}^{*} f^{\dagger} c_{k \sigma}(-1)^{n_{12}}\right]
\end{array}
\end{aligned}
$$

Tunneling Hamiltonian :

$$
\begin{aligned}
H_{T}= & \sum_{k, \sigma} \sum_{i=1,2}\left[V_{k \sigma i} c_{k \sigma}^{\dagger} \gamma_{i}+h . c .\right] \\
= & \sum_{k, \sigma}\left[V_{k \sigma} c_{k \sigma}^{\dagger} \psi_{12}+V_{k \sigma} c_{k \sigma}^{\dagger} \psi_{12}^{\dagger}\right. \\
& \left.\quad+V_{k \sigma}^{*} \psi_{12}^{\dagger} c_{k \sigma}+V_{k \sigma}^{*} \psi_{12} c_{k \sigma}\right]
\end{aligned}
$$

$$
\psi_{12}=\left(\gamma_{1}+i \gamma_{2}\right) / 2
$$

$$
V_{k \sigma}=V_{k \sigma 1}-i V_{k \sigma 2}
$$

Andreev scattering

AB effect due to "teleportation" via Majorana fermions

$$
H_{T}=\sum_{k, \sigma} \sqrt{2}\left[V_{k \sigma 1} c_{k \sigma}^{\dagger} f-i(-1)^{n_{12}} V_{k \sigma 2} c_{k \sigma}^{\dagger} f+h . c .\right]
$$

AB effect with period $\frac{h}{e}$

$$
\text { (not } \left.\frac{h}{2 e}!!\right)
$$

even for sufficiently large length of SC wire

Although level splitting is required, and it depends on the length L exponentially, non-local correlation does not depend on L explicitly !!

"Fractionalization" and 4ா-periodic Josephson effect

$$
\psi=\frac{\gamma_{1}+i \gamma_{2}^{\text {electron }}}{2} \circ \xrightarrow{\square} \circ \gamma_{1} \quad \text { "Fractionalization" }
$$

4π-periodic (fractional) Cooper pairs with $2 e$ split into Cooper pairs with e Josephson effect : (Kwon, Senguputa, Yakovenko; Kitaev)
Single-electron tunneling Hamiltonian :

$$
H_{1 t}=-t e^{i \phi} \psi_{\sigma 1}^{\dagger} \psi_{\sigma 2}+h . c . \quad \phi=\frac{2 e}{\hbar} \Phi
$$

Mode expansion of electron fields:
$i=1,2$

$$
\psi_{\sigma i}=u_{\sigma i}(x) \gamma_{i}+(\text { non-zero energy modes })
$$

$$
H_{1 t}=J_{M} i \gamma_{1} \gamma_{2} \cos \frac{\phi}{2}
$$

Top. SC
For parity-eigen state $\quad i \gamma_{1} \gamma_{2}=1$, or -1

4т-periodic

N.B. there is also usual Josephson tunneling with $2 \pi-$ periodicity

4T-periodic Josephson effect

Teleportation
single-electron
tunneling via M.F.
M.F. $\gamma_{1} \longleftrightarrow \gamma_{2}$ M.F.
insulator junction

Top. SC

AC 4Tr-periodic Josephson effect

(San-Jose et al.)

$\psi_{a}=\gamma_{2}+i \gamma_{3} \quad \psi_{b}=\gamma_{1}+i \gamma_{4}$

4π-periodic Josephson effect is absent for finite size systems, because of admixture with two other Majorana end states

However, ac 4π-periodic Josephson effect is still possible, because of non-adiabatic transition induced by ac fields

Experimentally detected? Rokhinson et al., Nature Physics 8, 795 (2012) not yet convincing

Thermal Responses

Chiral superconductor with broken TRS (class D and C)

Analogy to QHE (or Chern insulator)
QHE: $\quad \sigma_{x y}=\frac{e^{2}}{h} N$
 chiral gapless Dirac(QHE) or Majorana (SC) edge mode
2D class D top. SC: charge is not conserved but, energy is still conserved

$$
\kappa_{x y}=\frac{\pi^{2} k_{\mathrm{B}}^{2} T}{6 h} N \quad \begin{array}{r}
\text { quantum anomalous thermal Hall effect } \\
\text { (Read, Green; Nomura et al.; Sumiyoshi, S.F.) }
\end{array}
$$

$\mathrm{Sr}_{2} \mathrm{RuO}_{4}$
Chiral $p_{x}+i p_{y}$ SC (topological)

$\mathrm{URu}_{2} \mathrm{Si}_{2}$

Chiral d+id SC (not topological)

3D class C(trivial) not quantized but still nonzero spontaneous thermal Hall effect
(Y. Kasahara et al.)

TRI topological superconductor (class DIII)

Quantum anomalous thermal Hall effect

$$
J_{H}=-\frac{\pi^{2} k_{\mathrm{B}}^{2} T}{12 h} \underline{N} \hat{\boldsymbol{n}} \times \nabla T
$$

(Wang, Qi, Zhang; Nomura et al.; Shiozaki, S.F.)
trivial TRB s-wave superconductor ferromagnetic TRI topological superconductor

N is precisely equal to bulk top. invariant (winding number), when $\operatorname{Im} \Delta_{s} \neq 0$

How to realize phase difference ?

- bias between s-wave SC and TSC
- dynamical effect, $\operatorname{Im} \Delta_{s}(\omega) \neq 0$ for $\omega \neq 0$ due to inelastic scattering

SUMMARY

Exotic phenomena associated with Majorana fermions in SC
(i) Non-Abelian statistics
(ii) Non-local correlation and "teleportation"
(iii) Majorana fermion as "fractionalization" of electron
(iv) Thermal responses

In particular,
experimental detections of (i) and (ii) are the most important future issues

