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Majorana fermions in superconductors : Introduction

Majorana fermion  :
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How about the case that zero-energy modes are degenerate ?
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|u| = |v|?

Majorana fermions with 
nonzero energy satisfy

|u| = |v|

�†
k = ��k

Majorana condition 
for nonzero energy states

Bogoliubov q.p. with                    is Majorana|u| = |v|

of the fermionic atom with pseudospin ! ¼ ð"; #Þ at site
i ¼ ðix; iyÞ, and c s the gap function. x̂ (ŷ) is a basic
lattice vector along the x (y) axis. H SO is an effective
Rashba type SO interaction [19]. We will discuss later the
method of generating the Rashba SO interaction for neutral
atoms via laser fields. We also introduce the chemical
potential " and the Zeeman term induced by a magnetic
field h. In the momentum space, the Hamiltonian is recast
into H ¼ 1

2

P
kðcyk ; c$kÞH ðkÞðck; cy$kÞT with cyk ¼

ð1=
ffiffiffiffi
V

p
ÞPie

ikiðcyi"; cyi#Þ, and

H ðkÞ ¼ #k $ h!z þ gk & ! ic s!y

$ic s!y $#k þ h!z þ gk & !'

" #
;

(2)

where #k ¼ $2tðcoskx þ coskyÞ $", gk ¼ 2$ðsinky;
$ sinkxÞ, and ! ¼ ð!x;!yÞ the Pauli matrices.

As mentioned in the introduction, the non-Abelian to-
pological order is characterized by the existence of gapless
chiral edge states propagating only in one direction and the
existence of the non-Abelian anyons [5]. The former is also
associated with the nonzero Chern number [20]. In the
following, we demonstrate that these features are indeed
realized in the system (1) when a certain relation among",
h, and c s holds [Eq. (5) below].

A key observation of our analysis is that the Hamiltonian
H ðkÞ is unitary equivalent to the following ‘‘dual’’
Hamiltonian H DðkÞ,

H DðkÞ ¼ c s $ h!z $i#k!y $ igk & !!y

i#k!y þ igk!y! $c s þ h!z

" #
;

(3)

with the unitary transformation

H DðkÞ ¼ DH ðkÞDy; D ¼ 1ffiffiffi
2

p 1 i!y
i!y 1

" #
: (4)

From Eq. (3), it is found that the Rashba SO interaction
gk & ! in the original HamiltonianH ðkÞ is formally trans-
formed into a ‘‘p-wave SF gap’’ with the d vector, dD

k (

$gk, in the dual Hamiltonian H DðkÞ. However, this does
not necessarily mean that the topological properties of
H ðkÞ are the same as those of a p-wave SF, since
H DðkÞ has a nonstandard constant kinetic term #Dk (
c s. A similar p-wave SF state with a constant kinetic
energy term was considered before in the context of the
quantum-Hall effect (QHE) state [5]. An important feature
of (3) is that the topological order emerges when ", h, and
c s satisfy

c 2
s þ #ð0; 0Þ2 < h2 < c 2

s þ #ð%; 0Þ2; (5)

with #ðkx; kyÞ ( #k. Here note that although the condition
(5) implies the Zeeman energy larger than the BCS gap c s,
the superfluidity is stable when $ ) h [21]. This stability
is specific to neutral atomic systems. For electron systems,
such large magnetic fields usually destroy superconductiv-
ity via an orbital depairing effect.
Let us first examine edge states in our model. Figure 1

illustrates the energy bands obtained by diagonalizing the
lattice Hamiltonian (1) with the open boundaries at ix ¼ 0,
L for various h. Here we have taken the periodic boundary
condition in the y direction, and ky 2 ½$%;%+ is the lattice
momentum in the y direction. By increasing h from zero
adiabatically, it is found that the bulk energy gap closes at

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c 2

s þ #ð0; 0Þ2
p

[Fig. 1(b)], then, for h satisfying (5),
a gapless edge mode with a linear dispersion E, cky (E,
$cky) localized on the one edge (the other edge) appears
between the bulk energy gap [Fig. 1(c)]. This chiral edge
state is stable against any weak local perturbations pro-
vided that there exists the nonzero Chern number; i.e., the
topological number equivalent to the total number of gap-
less chiral edge modes, which was first introduced in the
case of the QHE states [20]. We calculated the Chern
number Q for H ðkÞ or equivalently H DðkÞ. [Since the
Chern number is calculated from the Berry curvature in the
momentum space, it is not affect by the unitary transfor-
mation D which is independent of k, ensuring the topo-
logical equivalence between (2) and (3).] We found that
Q ¼ 1 when the condition (5) is satisfied [22]. This is
consistent with the numerical results for edge states shown
above.
We now demonstrate that there exist the non-Abelian

anyons in our system. For this purpose, we solve the
Bogoliubov–de Gennes (BdG) equation for a single vortex:
If there exists a single Majorana fermion zero mode for
each vortex, vortices obey the non-Abelian statistics [5,6].
We use the dual Hamiltonian H D to solve the BdG equa-
tion, then construct a solution in the original Hamiltonian
H by using the duality transformation (4). For simplicity,
we assume #ð0; 0Þ ¼ 0 for the time being. Then, low-
energy properties are governed by fermions on the Fermi
surface, which is split into jkj, 0 and jkj, $=t by the SO
interaction, but the larger Fermi surface (jkj, $=t) can be
neglected for the zero mode [22]. Thus, we concentrate on
fermions with k - ð0; 0Þ, for whichH DðkÞ is decomposed
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FIG. 1 (color online). The band energy of the lattice
Hamiltonian (1) with edges at ix ¼ 0 and ix ¼ 50 ð¼ LÞ. Here
ky 2 ½$%;%+ denotes the momentum in the y direction. We set
t ¼ 1, " ¼ $4, $ ¼ 0:5, and c ¼ 0:5. h are (a) h ¼ 0,
(b) h ¼ 0:5, (c) h ¼ 0:8. The red thin line indicates a gapless
chiral edge mode localized on the one side and green thick line a
gapless chiral edge mode on the other side. They appear forffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c 2 þ #ð0; 0Þ2

p
< h<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c 2 þ #ð0;%Þ2
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Anti-commutation relation of Majorana fields holds
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1. Introduction
Topology in condensed matter physics has a long his-

tory. It plays an important role in the classification of topo-
logical defects in condensed matter systems, such as vor-
tices, dislocations, and disclinations etc., i.e. non-trivial tex-
tures in real space configurations. In 1982, a milestone was
achieved by Thouless et al. who found an intimate rela-
tion between topological invariants and the Hall conductiv-
ity in the quantum Hall effect. This is the first example of
topological non-triviality realized in bulk quantum solid state
systems, which is the origin of the notion of topological
phases. In the last decade, remarkable advances have been
achieved in this direction. Succeeding pioneering work by
Haldane and Volovik, Kane-Mele’s celebrated papers stim-
ulated exploration of topological phases in band insulators.
Since then, the notion of topological phases was extended to
various other systems, including superconductors, superflu-
ids, magnets, and correlated electron systems. In the topologi-
cal phases, there are topologically nontrivial structures in their
many-body Hilbert space. For topological superconductors, a
nontrivial structure arises from phase winding of supercon-
ducting order parameters in momentum space. This can be
regarded as a natural extension of a vortex of the supercon-
ducting order to momentum space. One of the most impor-
tant consequence of such topologically nontrivial structures
in superconductors is the existence of Majorana fermions,
which are zero-energy Bogoliubov quasiparticles. Because
of particle-hole symmetry of superconducting states, a zero-
energy single-particle state must be the equal-weight superpo-
sition of an electron and a hole. This implies that the hermit
conjugate of this state is the same as its own; i.e. a particle
is identical to an anti-particle, which is a signature of a Ma-
jorana fermion. In topological superconductors, the Majorana
zero-energy state realizes as an Andreev bound state at the
surface of samples and in vortex cores. An important point
here is that the Majorana zero-energy state is protected by the
bulk topological non-triviality of the Hilbert space (the mo-
mentum space), and is not affected by extrinsic factors such
as conditions of surfaces, impurities, and crystal imperfection.
This is in contrast to Majorana zero-energy state realized at
the surface of d-wave superconductors, which is sensitive to
the direction of the surface.

In this paper, we present a pedagogical review on recent
remarkable development of this field in the last decade, and
discuss various exotic phenomena associated with Majorana
fermions in topologically non-trivial superconductors.

2. ...
3. Realization of topological superconductors support-

ing Majorana fermions
3.1 Class D: Time-reversal-symmetry-broken case and non-

Abelian topological phase
3.2 Class DIII: Time-reversal-symmetric case
4. Non-Abelian statistics
4.1 Exchange operation of Majorana zero-energy modes

One of the most intriguing and remarkable features of Ma-
jorana zero-energy modes in superconductors is that they
obey non-Abelian statistics, which is drastically different
from Fermi statistics and Bose statistics. This novel quan-
tum statistics is a variant of anyon statistics which is realized
in fractional quantum Hall effect states, and basically real-
ized in two-dimensional (2D) systems. However, we note that
it is also possible to generalize the non-Abelian statistics to
three dimensions, which will be discussed in the next sub-
sections. As is well-known, the conventional quantum statis-
tics is characterized by change of a U(1) phase of a many-
body wave function raised by exchange of identical parti-
cles, and hence the many-body state does not depend on
the order of the exchange processes. In other words, the ex-
change operations constitute an Abelian group. In contrast,
for the non-Abelian statistics, exchange operations of parti-
cles is non-commutative, i.e. different order of exchange op-
erations of particles leads to different many-body states. As
a matter of fact, the particle-exchange operations (or more
rigorously, braiding operations in 2D systems) are described
by non-Abelian unitary operators which act on the (topologi-
cal) ground state space. Originally, it was discussed by Read,
Green, and Ivanov that a vortex with a Majorana zero mode in
its core obeys the non-Abelian statistics. However, we would
like to stress that the non-Abelian statistics is a more general
property of Majorana zero modes in topological superconduc-
tors, irrespective of whether they realize in vortex cores or at
open boundary edges of a sample.

To be concrete, let us consider N Majorana zero-energy
modes located at the spatial positions denoted by 1, 2, 3, ...
, N in a topological superconductor, whose fields are, respec-
tively, give by γ1, γ2, γ3, ..., γN . Here, all Majorana fields
satisfy,

γ2
i = 1, (1)

γiγ j = −γ jγi for i ! j. (2)

A key factor of the non-Abelian statistics of Majorana modes
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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Topology and Majorana Fermion

that combine superconductivity, magnetism, and strong spin-
orbit interactions.49–52 Recently, we showed that the exis-
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dimensional Bogoliubov de Gennes theory is related to a Z2
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surface surrounding the defect.53 This suggests that a more
general formulation of topological defects and their corre-
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changes in the Hamiltonian as a function of the real space
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where k is defined in a d-dimensional Brillouin zone !a torus
Td", and r is defined on a D-dimensional surface SD sur-
rounding the defect. A similar approach can be used to clas-
sify cyclic temporal variations in the Hamiltonian, which de-
fine adiabatic pumping cycles. Hereafter we will drop the
BdG subscript on the Hamiltonian with the understanding
that the symmetry class dictates whether it is a Bloch or BdG
Hamiltonian.
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fies the difference of H!k ,+1" and H!k ,−1". A nontrivial
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" = d − D . !1.1"
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depend only on ", the formulas for the topological invariants
depend on both d and D.
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defect to the structure of the protected modes associated with
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periodic table. We will start with a review of the Altland
Zirnbauer symmetry classes44 and a summary of the proper-
ties of the table. In Appendix A we will justify this generali-
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pings that relate Hamiltonians in different dimensions and
different symmetry classes. In addition to establishing that
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be easily understood, such as the pattern in which the clas-
sifications vary as a function of symmetry class as well as the
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In Secs. III and IV we will outline the physical conse-
quences of this theory by discussing a number of examples
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dimensions. The simplest example is that of a line defect in a
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that the presence of a 1D chiral Dirac fermion mode !analo-
gous to an integer quantum-Hall edge state" on the defect is
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interpreted as the winding number of the “#” term that char-
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Dirac fermions, which will be described in several illustra-
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Related topological invariants and illustrative examples
will be presented in Secs. III B–III E for line defects in other
symmetry classes that are associated with gapless 1D helical
Dirac fermions, 1D chiral Majorana fermions, and 1D helical
Majorana fermions. In Sec. IV we will consider point defects
in 1D models with chiral symmetry such as the Jackiw-Rebbi
model45 or the Su, Schrieffer, Heeger model,47 and in super-
conductors without chiral symmetry that exhibit Majorana
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FIG. 1. !Color online" Topological defects characterized by a D
parameter family of d-dimensional Bloch-BdG Hamiltonians. Line
defects correspond to d−D=2 while point defects correspond to d
−D=1. Temporal cycles for point defects correspond to d−D=0.
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Finally, in Sec. V we will regard r as including a temporal
variable, and apply the considerations in this paper to clas-
sify cyclic pumping processes. The Thouless charge
pump60,61 corresponds to a nontrivial cycle in a system with
no symmetries and !=0 !d=D=1". A similar pumping sce-
nario can be applied to superconductors and defines a fer-
mion parity pump. This, in turn, is related to the non-Abelian
statistics of Ising anyons and provides a framework for un-
derstanding braidless operations on systems of three-
dimensional superconductors hosting Majorana fermion
bound states. Details of several technical calculations can be
found in the Appendices. An interesting recent preprint by
Freedman et al.,62 which appeared when this manuscript was
in its final stages discusses some aspects of the classification
of topological defects in connection with a rigorous theory of
non-Abelian statistics in higher dimensions.

II. PERIODIC TABLE FOR DEFECT CLASSIFICATION

Table I shows the generalized periodic table for the clas-
sification of topological defects in insulators and supercon-
ductors. It describes the equivalence classes of Hamiltonians
H!k ,r", that can be continuously deformed into one another
without closing the energy gap, subject to constraints of
particle-hole and/or time-reversal symmetry. These are map-
pings from a base space defined by !k ,r" to a classifying
space, which characterizes the set of gapped Hamiltonians.
In order to explain the table, we need to describe !i" the
symmetry classes, !ii" the base space, !iii" the classifying
space, and !iv" the notion of stable equivalence. The repeat-
ing patterns in the table will be discussed in Sec. II C. Much
of this section is a review of material in Refs. 35 and 36.
What is new is the extension to D"0.

A. Symmetry classes

The presence or absence of time reversal symmetry,
particle-hole symmetry, and/or chiral symmetry define the
ten Altland-Zirnbauer symmetry classes.44 Time-reversal
symmetry implies that

H!k,r" = #H!− k,r"#−1, !2.1"

where the antiunitary time reversal operator may be written
#=ei$Sy/%K. Sy is the spin and K is complex conjugation. For
spin-1/2 fermions, #2=−1, which leads to Kramers theorem.
In the absence of a spin-orbit interaction, the extra invariance
of the Hamiltonian under rotations in spin space allows an
additional time-reversal operator #!=K to be defined, which
satisfies #!2=+1.

Particle-hole symmetry is expressed by

H!k,r" = − &H!− k,r"&−1, !2.2"

where & is the antiunitary particle-hole operator. Fundamen-
tally, &2=+1. However, as was the case for #, the absence
of spin-orbit interactions introduces an additional particle-
hole symmetry, which can satisfy &2=−1.

Finally, chiral symmetry is expressed by a unitary opera-
tor ', satisfying

H!k,r" = − 'H!k,r"'−1. !2.3"

A theory with both particle-hole and time-reversal symme-
tries automatically has a chiral symmetry '=ei(#&. The
phase ( can be chosen so that '2=1.

Specifying #2=0 , )1, &2=0 , )1, and '2=0 ,1 !here 0
denotes the absence of symmetry" defines the ten Altland-
Zirnbauer symmetry classes. They can be divided into two
groups: eight real classes that have anti unitary symmetries
# and or & plus two complex classes that do not have anti
unitary symmetries. Altland and Zirnbauer’s notation for
these classes, which is based on Cartan’s classification of
symmetric spaces, is shown in the left-hand part of Table I.

To appreciate the mathematical structure of the eight real
symmetry classes it is helpful to picture them on an 8 h
“clock,” as shown in Fig. 2. The x and y axes of the clock
represent the values of &2 and #2. The “time” on the clock
can be represented by an integer s defined modulo 8.
Kitaev36 used a slightly different notation to label the sym-
metry classes. In his formulation, class D is described by a
real Clifford algebra with no constraints, and in the other

TABLE I. Periodic table for the classification of topological defects in insulators and superconductors. The rows correspond to the
different Altland Zirnbauer !AZ" symmetry classes while the columns distinguish different dimensionalities, which depend only on !=d
−D.

Symmetry !=d−D
s AZ #2 &2 '2 0 1 2 3 4 5 6 7
0 A 0 0 0 Z 0 Z 0 Z 0 Z 0
1 AIII 0 0 1 0 Z 0 Z 0 Z 0 Z

0 AI 1 0 0 Z 0 0 0 2Z 0 Z2 Z2

1 BDI 1 1 1 Z2 Z 0 0 0 2Z 0 Z2

2 D 0 1 0 Z2 Z2 Z 0 0 0 2Z 0
3 DIII −1 1 1 0 Z2 Z2 Z 0 0 0 2Z
4 AII −1 0 0 2Z 0 Z2 Z2 Z 0 0 0
5 CII −1 −1 1 0 2Z 0 Z2 Z2 Z 0 0
6 C 0 −1 0 0 0 2Z 0 Z2 Z2 Z 0
7 CI 1 −1 1 0 0 0 2Z 0 Z2 Z2 Z
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hole symmetry, which can satisfy &2=−1.

Finally, chiral symmetry is expressed by a unitary opera-
tor ', satisfying

H!k,r" = − 'H!k,r"'−1. !2.3"

A theory with both particle-hole and time-reversal symme-
tries automatically has a chiral symmetry '=ei(#&. The
phase ( can be chosen so that '2=1.

Specifying #2=0 , )1, &2=0 , )1, and '2=0 ,1 !here 0
denotes the absence of symmetry" defines the ten Altland-
Zirnbauer symmetry classes. They can be divided into two
groups: eight real classes that have anti unitary symmetries
# and or & plus two complex classes that do not have anti
unitary symmetries. Altland and Zirnbauer’s notation for
these classes, which is based on Cartan’s classification of
symmetric spaces, is shown in the left-hand part of Table I.

To appreciate the mathematical structure of the eight real
symmetry classes it is helpful to picture them on an 8 h
“clock,” as shown in Fig. 2. The x and y axes of the clock
represent the values of &2 and #2. The “time” on the clock
can be represented by an integer s defined modulo 8.
Kitaev36 used a slightly different notation to label the sym-
metry classes. In his formulation, class D is described by a
real Clifford algebra with no constraints, and in the other
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Finally, in Sec. V we will regard r as including a temporal
variable, and apply the considerations in this paper to clas-
sify cyclic pumping processes. The Thouless charge
pump60,61 corresponds to a nontrivial cycle in a system with
no symmetries and !=0 !d=D=1". A similar pumping sce-
nario can be applied to superconductors and defines a fer-
mion parity pump. This, in turn, is related to the non-Abelian
statistics of Ising anyons and provides a framework for un-
derstanding braidless operations on systems of three-
dimensional superconductors hosting Majorana fermion
bound states. Details of several technical calculations can be
found in the Appendices. An interesting recent preprint by
Freedman et al.,62 which appeared when this manuscript was
in its final stages discusses some aspects of the classification
of topological defects in connection with a rigorous theory of
non-Abelian statistics in higher dimensions.

II. PERIODIC TABLE FOR DEFECT CLASSIFICATION

Table I shows the generalized periodic table for the clas-
sification of topological defects in insulators and supercon-
ductors. It describes the equivalence classes of Hamiltonians
H!k ,r", that can be continuously deformed into one another
without closing the energy gap, subject to constraints of
particle-hole and/or time-reversal symmetry. These are map-
pings from a base space defined by !k ,r" to a classifying
space, which characterizes the set of gapped Hamiltonians.
In order to explain the table, we need to describe !i" the
symmetry classes, !ii" the base space, !iii" the classifying
space, and !iv" the notion of stable equivalence. The repeat-
ing patterns in the table will be discussed in Sec. II C. Much
of this section is a review of material in Refs. 35 and 36.
What is new is the extension to D"0.
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The presence or absence of time reversal symmetry,
particle-hole symmetry, and/or chiral symmetry define the
ten Altland-Zirnbauer symmetry classes.44 Time-reversal
symmetry implies that
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where the antiunitary time reversal operator may be written
#=ei$Sy/%K. Sy is the spin and K is complex conjugation. For
spin-1/2 fermions, #2=−1, which leads to Kramers theorem.
In the absence of a spin-orbit interaction, the extra invariance
of the Hamiltonian under rotations in spin space allows an
additional time-reversal operator #!=K to be defined, which
satisfies #!2=+1.

Particle-hole symmetry is expressed by

H!k,r" = − &H!− k,r"&−1, !2.2"

where & is the antiunitary particle-hole operator. Fundamen-
tally, &2=+1. However, as was the case for #, the absence
of spin-orbit interactions introduces an additional particle-
hole symmetry, which can satisfy &2=−1.

Finally, chiral symmetry is expressed by a unitary opera-
tor ', satisfying

H!k,r" = − 'H!k,r"'−1. !2.3"

A theory with both particle-hole and time-reversal symme-
tries automatically has a chiral symmetry '=ei(#&. The
phase ( can be chosen so that '2=1.

Specifying #2=0 , )1, &2=0 , )1, and '2=0 ,1 !here 0
denotes the absence of symmetry" defines the ten Altland-
Zirnbauer symmetry classes. They can be divided into two
groups: eight real classes that have anti unitary symmetries
# and or & plus two complex classes that do not have anti
unitary symmetries. Altland and Zirnbauer’s notation for
these classes, which is based on Cartan’s classification of
symmetric spaces, is shown in the left-hand part of Table I.

To appreciate the mathematical structure of the eight real
symmetry classes it is helpful to picture them on an 8 h
“clock,” as shown in Fig. 2. The x and y axes of the clock
represent the values of &2 and #2. The “time” on the clock
can be represented by an integer s defined modulo 8.
Kitaev36 used a slightly different notation to label the sym-
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Finally, in Sec. V we will regard r as including a temporal
variable, and apply the considerations in this paper to clas-
sify cyclic pumping processes. The Thouless charge
pump60,61 corresponds to a nontrivial cycle in a system with
no symmetries and !=0 !d=D=1". A similar pumping sce-
nario can be applied to superconductors and defines a fer-
mion parity pump. This, in turn, is related to the non-Abelian
statistics of Ising anyons and provides a framework for un-
derstanding braidless operations on systems of three-
dimensional superconductors hosting Majorana fermion
bound states. Details of several technical calculations can be
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In order to explain the table, we need to describe !i" the
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ing patterns in the table will be discussed in Sec. II C. Much
of this section is a review of material in Refs. 35 and 36.
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ten Altland-Zirnbauer symmetry classes.44 Time-reversal
symmetry implies that
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where the antiunitary time reversal operator may be written
#=ei$Sy/%K. Sy is the spin and K is complex conjugation. For
spin-1/2 fermions, #2=−1, which leads to Kramers theorem.
In the absence of a spin-orbit interaction, the extra invariance
of the Hamiltonian under rotations in spin space allows an
additional time-reversal operator #!=K to be defined, which
satisfies #!2=+1.

Particle-hole symmetry is expressed by
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where & is the antiunitary particle-hole operator. Fundamen-
tally, &2=+1. However, as was the case for #, the absence
of spin-orbit interactions introduces an additional particle-
hole symmetry, which can satisfy &2=−1.

Finally, chiral symmetry is expressed by a unitary opera-
tor ', satisfying
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A theory with both particle-hole and time-reversal symme-
tries automatically has a chiral symmetry '=ei(#&. The
phase ( can be chosen so that '2=1.

Specifying #2=0 , )1, &2=0 , )1, and '2=0 ,1 !here 0
denotes the absence of symmetry" defines the ten Altland-
Zirnbauer symmetry classes. They can be divided into two
groups: eight real classes that have anti unitary symmetries
# and or & plus two complex classes that do not have anti
unitary symmetries. Altland and Zirnbauer’s notation for
these classes, which is based on Cartan’s classification of
symmetric spaces, is shown in the left-hand part of Table I.

To appreciate the mathematical structure of the eight real
symmetry classes it is helpful to picture them on an 8 h
“clock,” as shown in Fig. 2. The x and y axes of the clock
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Finally, in Sec. V we will regard r as including a temporal
variable, and apply the considerations in this paper to clas-
sify cyclic pumping processes. The Thouless charge
pump60,61 corresponds to a nontrivial cycle in a system with
no symmetries and !=0 !d=D=1". A similar pumping sce-
nario can be applied to superconductors and defines a fer-
mion parity pump. This, in turn, is related to the non-Abelian
statistics of Ising anyons and provides a framework for un-
derstanding braidless operations on systems of three-
dimensional superconductors hosting Majorana fermion
bound states. Details of several technical calculations can be
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of topological defects in connection with a rigorous theory of
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ing patterns in the table will be discussed in Sec. II C. Much
of this section is a review of material in Refs. 35 and 36.
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A. Symmetry classes

The presence or absence of time reversal symmetry,
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where the antiunitary time reversal operator may be written
#=ei$Sy/%K. Sy is the spin and K is complex conjugation. For
spin-1/2 fermions, #2=−1, which leads to Kramers theorem.
In the absence of a spin-orbit interaction, the extra invariance
of the Hamiltonian under rotations in spin space allows an
additional time-reversal operator #!=K to be defined, which
satisfies #!2=+1.

Particle-hole symmetry is expressed by
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where & is the antiunitary particle-hole operator. Fundamen-
tally, &2=+1. However, as was the case for #, the absence
of spin-orbit interactions introduces an additional particle-
hole symmetry, which can satisfy &2=−1.

Finally, chiral symmetry is expressed by a unitary opera-
tor ', satisfying
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A theory with both particle-hole and time-reversal symme-
tries automatically has a chiral symmetry '=ei(#&. The
phase ( can be chosen so that '2=1.

Specifying #2=0 , )1, &2=0 , )1, and '2=0 ,1 !here 0
denotes the absence of symmetry" defines the ten Altland-
Zirnbauer symmetry classes. They can be divided into two
groups: eight real classes that have anti unitary symmetries
# and or & plus two complex classes that do not have anti
unitary symmetries. Altland and Zirnbauer’s notation for
these classes, which is based on Cartan’s classification of
symmetric spaces, is shown in the left-hand part of Table I.

To appreciate the mathematical structure of the eight real
symmetry classes it is helpful to picture them on an 8 h
“clock,” as shown in Fig. 2. The x and y axes of the clock
represent the values of &2 and #2. The “time” on the clock
can be represented by an integer s defined modulo 8.
Kitaev36 used a slightly different notation to label the sym-
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Finally, in Sec. V we will regard r as including a temporal
variable, and apply the considerations in this paper to clas-
sify cyclic pumping processes. The Thouless charge
pump60,61 corresponds to a nontrivial cycle in a system with
no symmetries and !=0 !d=D=1". A similar pumping sce-
nario can be applied to superconductors and defines a fer-
mion parity pump. This, in turn, is related to the non-Abelian
statistics of Ising anyons and provides a framework for un-
derstanding braidless operations on systems of three-
dimensional superconductors hosting Majorana fermion
bound states. Details of several technical calculations can be
found in the Appendices. An interesting recent preprint by
Freedman et al.,62 which appeared when this manuscript was
in its final stages discusses some aspects of the classification
of topological defects in connection with a rigorous theory of
non-Abelian statistics in higher dimensions.
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space, which characterizes the set of gapped Hamiltonians.
In order to explain the table, we need to describe !i" the
symmetry classes, !ii" the base space, !iii" the classifying
space, and !iv" the notion of stable equivalence. The repeat-
ing patterns in the table will be discussed in Sec. II C. Much
of this section is a review of material in Refs. 35 and 36.
What is new is the extension to D"0.
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ten Altland-Zirnbauer symmetry classes.44 Time-reversal
symmetry implies that
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where the antiunitary time reversal operator may be written
#=ei$Sy/%K. Sy is the spin and K is complex conjugation. For
spin-1/2 fermions, #2=−1, which leads to Kramers theorem.
In the absence of a spin-orbit interaction, the extra invariance
of the Hamiltonian under rotations in spin space allows an
additional time-reversal operator #!=K to be defined, which
satisfies #!2=+1.

Particle-hole symmetry is expressed by
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where & is the antiunitary particle-hole operator. Fundamen-
tally, &2=+1. However, as was the case for #, the absence
of spin-orbit interactions introduces an additional particle-
hole symmetry, which can satisfy &2=−1.

Finally, chiral symmetry is expressed by a unitary opera-
tor ', satisfying

H!k,r" = − 'H!k,r"'−1. !2.3"

A theory with both particle-hole and time-reversal symme-
tries automatically has a chiral symmetry '=ei(#&. The
phase ( can be chosen so that '2=1.
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denotes the absence of symmetry" defines the ten Altland-
Zirnbauer symmetry classes. They can be divided into two
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# and or & plus two complex classes that do not have anti
unitary symmetries. Altland and Zirnbauer’s notation for
these classes, which is based on Cartan’s classification of
symmetric spaces, is shown in the left-hand part of Table I.

To appreciate the mathematical structure of the eight real
symmetry classes it is helpful to picture them on an 8 h
“clock,” as shown in Fig. 2. The x and y axes of the clock
represent the values of &2 and #2. The “time” on the clock
can be represented by an integer s defined modulo 8.
Kitaev36 used a slightly different notation to label the sym-
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Finally, in Sec. V we will regard r as including a temporal
variable, and apply the considerations in this paper to clas-
sify cyclic pumping processes. The Thouless charge
pump60,61 corresponds to a nontrivial cycle in a system with
no symmetries and !=0 !d=D=1". A similar pumping sce-
nario can be applied to superconductors and defines a fer-
mion parity pump. This, in turn, is related to the non-Abelian
statistics of Ising anyons and provides a framework for un-
derstanding braidless operations on systems of three-
dimensional superconductors hosting Majorana fermion
bound states. Details of several technical calculations can be
found in the Appendices. An interesting recent preprint by
Freedman et al.,62 which appeared when this manuscript was
in its final stages discusses some aspects of the classification
of topological defects in connection with a rigorous theory of
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ing patterns in the table will be discussed in Sec. II C. Much
of this section is a review of material in Refs. 35 and 36.
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where the antiunitary time reversal operator may be written
#=ei$Sy/%K. Sy is the spin and K is complex conjugation. For
spin-1/2 fermions, #2=−1, which leads to Kramers theorem.
In the absence of a spin-orbit interaction, the extra invariance
of the Hamiltonian under rotations in spin space allows an
additional time-reversal operator #!=K to be defined, which
satisfies #!2=+1.

Particle-hole symmetry is expressed by
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where & is the antiunitary particle-hole operator. Fundamen-
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of spin-orbit interactions introduces an additional particle-
hole symmetry, which can satisfy &2=−1.
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Finally, in Sec. V we will regard r as including a temporal
variable, and apply the considerations in this paper to clas-
sify cyclic pumping processes. The Thouless charge
pump60,61 corresponds to a nontrivial cycle in a system with
no symmetries and !=0 !d=D=1". A similar pumping sce-
nario can be applied to superconductors and defines a fer-
mion parity pump. This, in turn, is related to the non-Abelian
statistics of Ising anyons and provides a framework for un-
derstanding braidless operations on systems of three-
dimensional superconductors hosting Majorana fermion
bound states. Details of several technical calculations can be
found in the Appendices. An interesting recent preprint by
Freedman et al.,62 which appeared when this manuscript was
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non-Abelian statistics in higher dimensions.

II. PERIODIC TABLE FOR DEFECT CLASSIFICATION

Table I shows the generalized periodic table for the clas-
sification of topological defects in insulators and supercon-
ductors. It describes the equivalence classes of Hamiltonians
H!k ,r", that can be continuously deformed into one another
without closing the energy gap, subject to constraints of
particle-hole and/or time-reversal symmetry. These are map-
pings from a base space defined by !k ,r" to a classifying
space, which characterizes the set of gapped Hamiltonians.
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#=ei$Sy/%K. Sy is the spin and K is complex conjugation. For
spin-1/2 fermions, #2=−1, which leads to Kramers theorem.
In the absence of a spin-orbit interaction, the extra invariance
of the Hamiltonian under rotations in spin space allows an
additional time-reversal operator #!=K to be defined, which
satisfies #!2=+1.

Particle-hole symmetry is expressed by

H!k,r" = − &H!− k,r"&−1, !2.2"

where & is the antiunitary particle-hole operator. Fundamen-
tally, &2=+1. However, as was the case for #, the absence
of spin-orbit interactions introduces an additional particle-
hole symmetry, which can satisfy &2=−1.

Finally, chiral symmetry is expressed by a unitary opera-
tor ', satisfying

H!k,r" = − 'H!k,r"'−1. !2.3"

A theory with both particle-hole and time-reversal symme-
tries automatically has a chiral symmetry '=ei(#&. The
phase ( can be chosen so that '2=1.

Specifying #2=0 , )1, &2=0 , )1, and '2=0 ,1 !here 0
denotes the absence of symmetry" defines the ten Altland-
Zirnbauer symmetry classes. They can be divided into two
groups: eight real classes that have anti unitary symmetries
# and or & plus two complex classes that do not have anti
unitary symmetries. Altland and Zirnbauer’s notation for
these classes, which is based on Cartan’s classification of
symmetric spaces, is shown in the left-hand part of Table I.

To appreciate the mathematical structure of the eight real
symmetry classes it is helpful to picture them on an 8 h
“clock,” as shown in Fig. 2. The x and y axes of the clock
represent the values of &2 and #2. The “time” on the clock
can be represented by an integer s defined modulo 8.
Kitaev36 used a slightly different notation to label the sym-
metry classes. In his formulation, class D is described by a
real Clifford algebra with no constraints, and in the other
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Finally, in Sec. V we will regard r as including a temporal
variable, and apply the considerations in this paper to clas-
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pump60,61 corresponds to a nontrivial cycle in a system with
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nario can be applied to superconductors and defines a fer-
mion parity pump. This, in turn, is related to the non-Abelian
statistics of Ising anyons and provides a framework for un-
derstanding braidless operations on systems of three-
dimensional superconductors hosting Majorana fermion
bound states. Details of several technical calculations can be
found in the Appendices. An interesting recent preprint by
Freedman et al.,62 which appeared when this manuscript was
in its final stages discusses some aspects of the classification
of topological defects in connection with a rigorous theory of
non-Abelian statistics in higher dimensions.
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1Departamento de Fı́sica Teórica de la Materia Condensada, Centro de Investigación de Fı́sica de la Materia Condensada,
and Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

2Laboratoire de Physique des Solides, CNRS UMR-8502, Université Paris Sud, 91405 Orsay Cedex, France
(Received 11 July 2013; published 1 October 2013)

We study a one-dimensional interacting electronic liquid coupled to a 1D array of classical magnetic

moments and to a superconductor. We show that at low energy and temperature the magnetic moments and

the electrons become strongly entangled and that a magnetic spiral structure emerges. For strong enough

coupling between the electrons and magnetic moments, the 1D electronic liquid is driven into a

topological superconducting phase supporting Majorana fermions without any fine-tuning of external

parameters. Our analysis applies at low enough temperature to a quantum wire in proximity to a

superconductor when the hyperfine interaction between electrons and nuclear spins is taken into account,

or to a chain of magnetic adatoms adsorbed on a superconducting surface.
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Introduction.—The interaction between localized mag-
netic moments and delocalized electrons contains the
essential physics of many modern condensed matter sys-
tems. It is on the basis of nuclear magnets [1], heavy
fermion materials of the Kondo-lattice type [2], or ferro-
magnetic semiconductors [3–6]. It often leads to new
intricate physics and rich phases diagrams, even if the
magnetic moments behave classically. Electron systems
interacting with nuclear spins through the hyperfine inter-
action or magnetic adatoms with large magnetic moments
arranged in some array on a metallic surface enter into this
class.

In 1D, the interactions between the nuclear spins and
electrons lead to dramatic effects: below a crossover tem-
perature T", a new exotic phase of matter in which the
nuclear magnets are strongly tied to the electrons naturally
emerges [7,8]. In this phase, the nuclear spins form a
helical magnetic structure caused by the effective
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction [9]
mediated by the electron system. The feedback of this
nuclear Overhauser field on the electron system entirely
restructures the electronic states in that it opens a gap in
one half of the elementary low-energy modes. The remain-
ing electronic degrees of freedom remain gapless and form
a quasihelical Luttinger liquid with strong analogies [10]
with the edge states of the 2D quantum spin Hall effect
[11,12]. Because of the mutual feedback, this order of
strongly coupled electrons and nuclear spins is stable
below a temperature T", and electron-electron interactions
substantially enhance the stability [8]. Recent transport
measurements in cleaved edge overgrowth GaAs quantum
wires found a reduction of the conductance by a factor
of 2 below T < 100 mK independently of the density or
applied magnetic field, consistent with this theory [13].

We stress that the mechanism behind this emergent
helical structure is general, the essential ingredient being
the RKKY interaction. Therefore, the same mechanism
can apply if the nuclear spins are replaced by classical
magnetic moments forming a 1D lattice (not necessarily a
regular one), such as magnetic adatoms on top of a metallic
surface [14].
When a finite-sized helical liquid is put in proximity of

an s-wave superconductor, Majorana states can emerge at
both ends [15] (see Fig. 1). This is the case for a quantum
wire in the presence of spin-orbit coupling and a Zeeman
term [16,17] where some possible signatures of Majorana
fermion physics have been recently reported experimen-
tally [18–20]. The helical liquid, up to a gauge transforma-
tion [21], can also be obtained by coupling electrons to a
spiral magnetic field (like the intrinsic nuclear Overhauser
field [8]), or by manufacturing an external rotating mag-
netic field [22]. They can appear in rare-earth compounds
exhibiting coexisting helical magnetism and superconduc-
tivity [23], or emerge by arranging magnetic adatoms in 1D
arrays on the surface of a superconductor [24,25].
Since induced or intrinsic superconductivity entirely

restructures the electron system, it is not a priori obvious

FIG. 1 (color online). A conductor with large magnetic mo-
ments placed on top of a superconductor. Topological super-
conductivity, Majorana bound states, and a spiral order of the
magnetic moments emerge from a self-organization of the
coupled systems of electrons and magnetic moments.
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Possible realization

• spin-singlet SC with strong spin-orbit interaction 
and Zeeman fields

• Helium 3, B phase

2D class D with broken TRS

class DIII with TRS

• Sr2RuO4

kx

ky
(Sato,Takahashi,S.F.; Sau et al.; Alicea; Luchyn  et al.; Oreg et al.)

• CuxBi2Se3 (Fu, Berg; Sasaki et al.)

(Maeno et al.)

• Proximity-induced SC on surface of top. insulator (L. Fu,C. L. Kane)
(TRS must be broken by magnetic fields)

• spin-singlet SC coupled with spiral magnetic order
(Braunecker, Simon; Klinovaja et al.; 
Vazifeh, Franz; Nakosai,Tanaka,Nagaosa)
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Non-Abelian statistics

exchange (braiding) of particles is non-commutative !!
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Exchange (braiding) operation of Majorana zero modes
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,
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acy. We note that this degeneracy can not be lifted by local
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erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
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or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
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occupation number n12 must not be changed by the exchange
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or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
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identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
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γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,
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We can verify that σx,y,z defined above actually satisfy the
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2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
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(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
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exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
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erty is important in connection with the application to topo-
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rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
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2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
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1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,
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Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
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holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.
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and γ j can be conveniently expressed as,
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without vortices. To see this, let us consider the braiding of γ1
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fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
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Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
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modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =
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j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,
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It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
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if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
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is nothing but the number of quasiparticles which arises from
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Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
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operation. Then, we have s1s2 = −1. On the other hand, in
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states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
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γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
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j. Otherwise, the exchange of γ1 and γ2 can affect fermion
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holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,
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γiγ j
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=
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(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
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occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
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and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,
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number of ψ12; i.e. an electron state |1〉 is transformed into
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coefficients given by the wave function of the Bogoliubov-de-
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fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
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acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
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γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
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fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
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fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
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is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,
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Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
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Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.
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and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
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identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
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γ3 (see Fig. ...). An important observation is that the Majorana
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(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
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=
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(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)
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−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =
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(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,
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Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=
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2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
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2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+
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U12γ1γ2U†12 =
1
2
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2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=
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2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,
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ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
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4
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=
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(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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see that this property can be utilized for experimental detec-
tion of the non-Abelian statistics. It is noted that, as men-
tioned before, the parity of the total number of quasiparti-
cles should not change in the superconducting state. In fact,
under the above operation the parity of the occupation num-
ber n34 of ψ34 = (γ3 + iγ4)/2 is also changed, and the total
parity change cancels. The state composed of the four Ma-
jorana fermions γ1, γ2, γ3, and γ4 is completely specified by
the occupation numbers n12 and n34. We denote this state as
|n12, n34〉 = (ψ†12)n12 (ψ†34)n34 |0, 0〉. Since the parity of n12 + n34
must be preserved, there are two sets of doubly-degenerate
states, i.e. {|1, 1〉, |0, 0〉}, and {|1, 0〉, |0, 1〉}. The exchange of
any two of the four Majorana fermions operates on these
doubly-degenerate states. For instance, the exchange of γ1 and
γ3 results in,

U31|1, 1〉 =
1√
2

(|1, 1〉 − |0, 0〉), (11)

U31|0, 0〉 =
1√
2

(|1, 1〉 + |0, 0〉), (12)

U31|1, 0〉 =
1√
2

(|1, 0〉 − |0, 1〉), (13)

U31|0, 1〉 =
1√
2

(|1, 0〉 + |0, 1〉). (14)

These transformation rules are obtained as follows. We, first,
note that from ψ12|0, 0〉 = ψ34|0, 0〉 = 0, and ψ12|0, 1〉 =
ψ34|1, 0〉 = 0, it follows γ1|0, 0〉 = −iγ2|0, 0〉, γ3|0, 0〉 =
−iγ4|0, 0〉, γ1|01〉 = −iγ2|0, 1〉, and γ3|1, 0〉 = −iγ4|1, 0〉.
Then, we have |1, 1〉 = ψ†12ψ

†
34|0, 0〉 = γ1γ3|0, 0〉, |0, 0〉 =

−γ1γ3|1, 1〉, |1, 0〉 = ψ†12|0, 0〉 = γ1γ3|0, 1〉, and |0, 1〉 =
ψ†34|0, 0〉 = −γ1γ3|1, 0〉. Using these relations and eq.(7), we
obtain eqs.(11)-(14).

As seen in eqs.(11)-(14), the exchange operation U31 is
the unitary transformation in the two-dimensional degenerate
spaces. More generally, the exchange operations of Majorana
fermions defined by (7) are non-Abelian unitary transforma-
tion. The non-commutativity of Ui j can be easily verified as

Ui jU jk − U jkUi j = −γiγk = i(2nik − 1). (15)

Since nik = 1 or 0, the operation of eq.(15) on any states leads
to a non-zero eigen value. Thus, Majorana zero-energy states
in superconductors obey the non-Abelian statistics character-
ized by non-commutativity of particle exchange.

4.3 Application to quantum computation
The unitary transformation generated by the exchange of

Majorana zero modes discussed above can be utilized for
building up quantum gates. This is an idea of topological
quantum computation based on the manipulation of Majorana
fermions.

4.4 Non-Abelian statistics in three dimensions
In standard textbooks of quantum mechanics, it is written

that in three spatial dimensions, exchanging the positions of
two identical point-like particles twice times results in the
same state as the original one. In other words, in three di-
mensions, braiding of two particles is trivial, and only Bose

or Fermi statistics is possible. However, as explained in the
section 4.1, the exchange rule (3), which is the basis of the
non-Abelian statistics, holds for Majorana zero modes in su-
perconductors irrespective of spatial dimensions. In fact, it
was clarified by Teo and Kane that the non-Abelian statistics
of Majorana zero modes is possible even in three-dimensional
systems, when there are point-like defects with Majorana zero
modes in a superconductor. They demonstrated that such a de-
fect realizes in heterostructure systems; e.g. the intersection
of a vortex of the s-wave pairing and the interface between a
topological insulator and a trivial superconductor. An impor-
tant point here is that the point defect is not really a point-like
object, but spatially extended, because of the texture structure
composed of the spatially-varying order parameter of the su-
perconductor and the band gap which spatially varies from a
negative value in the topological insulator region to a positive
one in the trivial superconductor region. Because of such ad-
ditional degrees of freedom, the exchange of two particles can
be non-trivial in contrast to conventional quantum statistics. It
was also elucidated by Freedman et al. that the non-Abelian
statistics of spatially-extended defects with zero modes is as-
sociated with projective ribbon permutation statistics, where
a texture accompanying a zero mode is intuitively regarded as
a ribbon, at the open edge of which there is a localized zero
mode. Also, the non-Abelian statistics in three dimensions is
possible in three-dimensional network of nanowires in which
Majorana zero modes appear at boundaries between a topo-
logical sector and a trivial sector.

4.5 Proposal for experimental detection of non-Abelian
statistics

There are several proposals for experimental schemes of
detection of non-Abelian statistics. A remarkable feature of
non-Abelian statistics is the non-commutativity of particle ex-
changes. Thus, an important issue is how one can detect the
non-commutativity in experimentally observable quantities.
Most of these proposals utilize certain kinds of interferom-
eters, in which the exchange of Majorana fermions can be
achieved when a Majorana edge mode travels encircling a vor-
tex Majorana zero mode inside the bulk of a superconductor.
(see Fig. ...) The signature of the non-commutativity appears
in transport properties of the interferometers. A simplest ex-
ample is a class D topological superconductor attached with a
single metallic lead (Fig. ...). A more sophisticated approach
proposed by Grosfeld and Stern is to utilize the interplay be-
tween the Aharonov-Bohm effect and Aharonov-Casher ef-
fect.

4.5.1 One-lead conductance measurement
We consider the setup shown in Fig...., in which the bulk

is a class D topological superconductor in two-dimensions.
For simplicity, we assume that there is only one chiral Ma-
jorana gapless mode on the one-dimensional edge of the sys-
tem. There is a finite tunneling amplitude between electrons
(or holes) in the lead and the gapless edge state. The Hamil-
tonian for this tunneling process with the amplitude t is given
by

Htun = i
t
2
γ(0)

∑

σ

[cσ(0) + c†σ(0)], (16)
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see that this property can be utilized for experimental detec-
tion of the non-Abelian statistics. It is noted that, as men-
tioned before, the parity of the total number of quasiparti-
cles should not change in the superconducting state. In fact,
under the above operation the parity of the occupation num-
ber n34 of ψ34 = (γ3 + iγ4)/2 is also changed, and the total
parity change cancels. The state composed of the four Ma-
jorana fermions γ1, γ2, γ3, and γ4 is completely specified by
the occupation numbers n12 and n34. We denote this state as
|n12, n34〉 = (ψ†12)n12 (ψ†34)n34 |0, 0〉. Since the parity of n12 + n34
must be preserved, there are two sets of doubly-degenerate
states, i.e. {|1, 1〉, |0, 0〉}, and {|1, 0〉, |0, 1〉}. The exchange of
any two of the four Majorana fermions operates on these
doubly-degenerate states. For instance, the exchange of γ1 and
γ3 results in,

U31|1, 1〉 =
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(|1, 1〉 − |0, 0〉), (11)

U31|0, 0〉 =
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These transformation rules are obtained as follows. We, first,
note that from ψ12|0, 0〉 = ψ34|0, 0〉 = 0, and ψ12|0, 1〉 =
ψ34|1, 0〉 = 0, it follows γ1|0, 0〉 = −iγ2|0, 0〉, γ3|0, 0〉 =
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−γ1γ3|1, 1〉, |1, 0〉 = ψ†12|0, 0〉 = γ1γ3|0, 1〉, and |0, 1〉 =
ψ†34|0, 0〉 = −γ1γ3|1, 0〉. Using these relations and eq.(7), we
obtain eqs.(11)-(14).

As seen in eqs.(11)-(14), the exchange operation U31 is
the unitary transformation in the two-dimensional degenerate
spaces. More generally, the exchange operations of Majorana
fermions defined by (7) are non-Abelian unitary transforma-
tion. The non-commutativity of Ui j can be easily verified as

Ui jU jk − U jkUi j = −γiγk = i(2nik − 1). (15)

Since nik = 1 or 0, the operation of eq.(15) on any states leads
to a non-zero eigen value. Thus, Majorana zero-energy states
in superconductors obey the non-Abelian statistics character-
ized by non-commutativity of particle exchange.

4.3 Application to quantum computation
The unitary transformation generated by the exchange of

Majorana zero modes discussed above can be utilized for
building up quantum gates. This is an idea of topological
quantum computation based on the manipulation of Majorana
fermions.

4.4 Non-Abelian statistics in three dimensions
In standard textbooks of quantum mechanics, it is written

that in three spatial dimensions, exchanging the positions of
two identical point-like particles twice times results in the
same state as the original one. In other words, in three di-
mensions, braiding of two particles is trivial, and only Bose

or Fermi statistics is possible. However, as explained in the
section 4.1, the exchange rule (3), which is the basis of the
non-Abelian statistics, holds for Majorana zero modes in su-
perconductors irrespective of spatial dimensions. In fact, it
was clarified by Teo and Kane that the non-Abelian statistics
of Majorana zero modes is possible even in three-dimensional
systems, when there are point-like defects with Majorana zero
modes in a superconductor. They demonstrated that such a de-
fect realizes in heterostructure systems; e.g. the intersection
of a vortex of the s-wave pairing and the interface between a
topological insulator and a trivial superconductor. An impor-
tant point here is that the point defect is not really a point-like
object, but spatially extended, because of the texture structure
composed of the spatially-varying order parameter of the su-
perconductor and the band gap which spatially varies from a
negative value in the topological insulator region to a positive
one in the trivial superconductor region. Because of such ad-
ditional degrees of freedom, the exchange of two particles can
be non-trivial in contrast to conventional quantum statistics. It
was also elucidated by Freedman et al. that the non-Abelian
statistics of spatially-extended defects with zero modes is as-
sociated with projective ribbon permutation statistics, where
a texture accompanying a zero mode is intuitively regarded as
a ribbon, at the open edge of which there is a localized zero
mode. Also, the non-Abelian statistics in three dimensions is
possible in three-dimensional network of nanowires in which
Majorana zero modes appear at boundaries between a topo-
logical sector and a trivial sector.

4.5 Proposal for experimental detection of non-Abelian
statistics

There are several proposals for experimental schemes of
detection of non-Abelian statistics. A remarkable feature of
non-Abelian statistics is the non-commutativity of particle ex-
changes. Thus, an important issue is how one can detect the
non-commutativity in experimentally observable quantities.
Most of these proposals utilize certain kinds of interferom-
eters, in which the exchange of Majorana fermions can be
achieved when a Majorana edge mode travels encircling a vor-
tex Majorana zero mode inside the bulk of a superconductor.
(see Fig. ...) The signature of the non-commutativity appears
in transport properties of the interferometers. A simplest ex-
ample is a class D topological superconductor attached with a
single metallic lead (Fig. ...). A more sophisticated approach
proposed by Grosfeld and Stern is to utilize the interplay be-
tween the Aharonov-Bohm effect and Aharonov-Casher ef-
fect.

4.5.1 One-lead conductance measurement
We consider the setup shown in Fig...., in which the bulk

is a class D topological superconductor in two-dimensions.
For simplicity, we assume that there is only one chiral Ma-
jorana gapless mode on the one-dimensional edge of the sys-
tem. There is a finite tunneling amplitude between electrons
(or holes) in the lead and the gapless edge state. The Hamil-
tonian for this tunneling process with the amplitude t is given
by

Htun = i
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will

2

J. Phys. Soc. Jpn. INVITED REVIEW PAPERS

is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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where γ(0) is a Majorana field for the edge state at r = 0
where the lead is attached, and cσ(0), c††(0) are electron anni-
hilation and creation operators with spin σ at the same point.
Eq.(39) implies that only one of real fields, γ1, which con-
stitute the complex field ψ = (γ1 + iγ2)/

√
2 couples with the

Majorana edge state, and the other one γ2 is decoupled. Let us
consider the situation that there is one vortex inside the bulk
superconductor which contains one Majorana zero mode. We
denote the Majorana field for the vortex core state as γ3. The
tunneling between the lead and the superconductor induce the
injection of γ1 into the Majorana edge state. The injected Ma-
jorana fermion travels along the circumference of the super-
conductor encircling the Majorana zero mode γ3 in the vortex
core, and returns to the lead, constituting the electron (or hole)
field ψ† (ψ) with γ2 again. In this process, twice exchange op-
eration of γ1 and γ3 occurs, which is expressed by (U31)2 as
explained in the section 4.2. Then, from eq.(10), the occupa-
tion number of an electron n = ψ†ψ in the lead is changed
by this process; i.e. the electron state in the lead is completely
converted into the hole state and vice versa. We can generalize
this consideration to the case that there are multiple vortices
inside the bulk superconductor. If the number of vortices with
a single Majorana zero mode in each vortex core is odd, the
conversion between the electron state |1〉 and the hole state
|0〉 occurs with probability of unity after the above process.
Hence, we arrive at a remarkable consequence that the con-
ductance for the attached lead is quantized as 2e2/h when the
number of enclosed vortices is odd.

The quantized conductance can be derived explicitly by us-
ing scattering theory. We, here, follow a sophisticated argu-
ment presented by Li, Fleury, and Büttiker. For simplicity, we
consider the case that there are only one chiral Majorana zero
mode on the edge of the superconductor and one channel of
conduction electrons in the lead, and that there are also nv vor-
tices with Majorana zero modes in the core in the bulk of the
superconductor. Hereafter, it is assumed that the vorticity of
each vortex is unity. nv must be odd, since the total number
of Majorana fermions including the edge state and the vor-
tex core states, which emerge from splitting original electrons
into two parts, should be even. Then, the scattering matrix for
electrons and holes at the junction connects the incoming state
of electrons and holes (ψ†in,ψin) and the outgoing state of them
(ψ†out,ψout):

(
ψout

ψ†out

)
= S

(
ψin

ψ†in

)
. (17)

Here, spin indices are omitted. In fact, for any realistic pro-
posals of realizing non-Abelian statistics in class D topolog-
ical superconductors, spin-orbit interaction and the Zeeman
effect split the Fermi surface into two parts, and only one
of them is relevant to the topological superconducting state.
Thus, there is only one type of fermions which is the super-
position of an up-spin state and a down-spin state. ψ and ψ†
can be expressed in terms of Majorana fields γ1 and γ2 via,

(
ψ
ψ†

)
=

1√
2

(
1 i
1 −i

) (
γ1/
√

2
γ2/
√

2

)
. (18)

Thus, transforming into the Majorana basis, we obtain the

scattering matrix for Majorana modes,

S M =
1
2

(
1 1
−i i

)
S

(
1 i
1 −i

)
. (19)

As mentioned above, only γ1 couples to the chiral Majorana
edge mode, leaving γ2 unaffected. Then, S M is expressed as

S M =

(
rM1 0
0 1

)
, (20)

where rM1 is the reflection amplitude for the Majorana
fermion γ1. rM1 can be derived in the following manner. At
the junction between the lead and the superconductor, the Ma-
jorana state γ1 tunnels into the chiral Majorana edge state γ
with tunneling amplitude

√
1 − r2

0, where r0 is the bare re-
flection amplitude of γ1 at the junction. Traveling around the
superconducting region, the Majorana state acquires the phase
change θ = nvπ + π + kL with k the wave number of the chi-
ral Majorana mode, and L the length of the circumference of
the superconductor. The second term of θ, pi, arises from the
Berry phase due to the rotation of spin. Note that for realistic
proposals mentioned before, spin-orbit interaction combined
with the Zeeman effect gives rise to spin texture structure on
the Fermi surface. For instance, in the case of a supercon-
ductor with the Rashba spin-orbit interaction λσ · (ky,−kx, 0),
the direction of spin is in the xy-plane and perpendicular to
the propagating direction. Hence, the motion of a Majorana
fermion along the circumference accompanies the rotation of
spin by 2π, resulting in the Berry phase π. After traveling
around the edge, the Majorana mode tunnels into the γ1 state
in the lead again with probability

√
1 − r2

0. Then, the ampli-
tude for this one turn process is −(1 − r2

0)eiθ, where the total
minus sign arises from backward scattering. In a similar man-
ner, the amplitude for the Majorana mode moving around the
circumference of the superconductor n-times with successive
tunneling into the lead is given by −(1− r2

0)rn−1
0 einθ. Then, the

total amplitude for the reflection is

rM1 = r0 − (1 − r2
0)eiθ − (1 − r2

0)r0ei2θ − (1 − r2
0)r2

0ei3θ − · · ·

=
r0 − eiθ

1 − r0eiθ . (21)

The scattering matrix in the electron-hole basis S is obtained
from eq.(19),

S =
(

see seh
she shh

)
=

1
2

(
rM1 + 1 rM1 − 1
rM1 − 1 rM1 + 1

)
. (22)

The current due to the Andreev reflection at the junction in
the zero temperature limit is given by

I =
2e
h

∫ eV

0
dE|she|2, (23)

|she|2 = (r0 − 1)2

2
· 1 + cos θ

1 + r2
0 − 2r0 cos θ

, (24)

where V is bias-voltage applied to the lead, and E = vMk with
vM velocity of the chiral Majorana edge state. Note that when
nv is odd and θ = 2π× integer, |seh|2 = 1 in the limit of E → 0,
irrespective of the value of r0, as seen from eq.(24). Thus, we
obtain the quantized conductance G = dI/dV |V→0 = 2e2/h.
On the other hand, when nv is even, i.e. θ = π × (odd integer),

4

G = 2
e2

h

However, for realistic systems with multiple channels in the lead, electrons 
not coupled to chiral Majorana mode lead to non-quantized conductance
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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where JM is a real constant. In addition to this, there is also
a usual Josephson coupling term for Cooper pair tunneling,
which is expressed as H2t = J cos φ with J a Josephson tun-
neling amplitude. Since the system is isolated, the total charge
number is conserved, and hence, it is an eigen state of the
fermion parity (5); i.e. iγ1γ2 = 1 or −1. As seen from (27),
these parity-eigen state exhibits 4π-periodicity of the Joseph-
son current as a function of φ. This implies that the Joseph-
son current is not carried by Cooper pairs with charge 2e,
but rather by particles with charge e; i.e. ”fractionalizaion”
of Cooper pairs.

The experimental exploration for the 4π-periodic Joseph-
son effect was achieved by ..... They used a quasi-1D nanowire
with proximity-induced-superconductivity for the realization
of topological superconductor. In this case, since there are two
additional Majorana zero-energy end states at two open edges
as well as those at the junction. Thus, the fermion-parity at
the junction is not conserved, but the mutual exchange of
the fermion parity between the junction and the open edges
occurs. In this situation, the transition between two parity-
eigen states occurs, and the periodicity of the Josephson cur-
rent is changed to 2π, which is the same as the conventional
Josephson effect. However, as clarified by San-Jose, Prada,
and Aguado, the 4π-periodicity is partially recovered in the
case of the ac Josephson effect, for which non-adiabatic tran-
sitions between states with the same fermion-parity are al-
lowed. In ref..., the measurement of the Shapiro steps, which
demonstrates the ac Josephson effect, was carried out, and the
double height of the Shapiro steps was observed. This obser-
vation may be a signature of the 4π-periodic Josephson effect.

6. Non-local correlation of Majorana fermions and tele-
portation

As mentioned before, we can interpret the emergence of
a Majorana fermion in a superconductor as splitting up a
complex fermionic field of an electron into real and imag-
inary parts. From this point of view, one may expect non-
local correlation between two spatially separated Majorana
fermions. This is, indeed, the case for certain situations. To
deal with this issue, we consider a simple toy model of
one-dimensional topological superconductor with a Majorana
zero-energy mode localized at the open boundaries of the sys-
tem. We denote Majorana fields for these edge states at x = 0
and L as γ1 and γ2, respectively. For this system, the mode
expansion of an electron operator with spin σ at x, ψσ(x), is
given by

ψσ(x) =
∑

i=1,2

uσi(x)γi + (non-zero energy modes). (28)

The non-local correlation can be immediately seen from
long-distance behaviors of correlation function 〈ψσ(x)ψ†σ(y)〉.
Since uσ1(2) is localized around x = 0 (L), and there are no
low-energy excitations other than the Majorana edge states,
we have, for x ∼ 0 and y ∼ L,

〈ψσ(x)ψ†σ(y)〉 ∼ uσ1(x)u∗σ2(y)〈γ1γ2〉. (29)

As mentioned in the previous sections, the topological su-
perconducting phase is the eigen state of the parity operator
iγ1γ2 = 2n−1 with n12 = ψ

†
12ψ12, as long as the system is iso-

lated. Thus, the correlation function (29) is non-zero even for
|x − y| → ∞, which signifies non-local correlation raised by

the existence of Majorana zero modes. This non-local corre-
lation affects tunneling probability of electrons mediated via
Majorana zero modes in an interesting way. Let us consider
electron tunneling from one end at x = 0 to the other end at
x = L. The tunneling amplitude is proportional to the corre-
lation function (29), which is independent of the distance be-
tween two edges L. This remarkable L-independent behavior
of the tunneling is referred to as ”teleportation”. However, the
experimental detection of this ”teleportation” is a bit tricky is-
sue, because of the following reason. To distinguish whether
an electron detected at x = L comes from the opposite edge at
x = 0 via tunneling or is created from breaking up a Cooper
pair in the superconductor, we need to detect the parity state
of ψ12 simultaneously. Also, we note that this ”teleportation”
does not break causality, because the information of the one
end state, say at x = 0, must be transferred to the observer at
x = L in a classical way to detect the above-mentioned tun-
neling process. Furthermore, to probe the Majorana end state,
one needs to couple the boundary edge with a lead which al-
low electrons coming in and going out, resulting in the fail-
ure of parity conservation. Then, the systems is no longer the
eigen state of γ1γ2, and the average of this operator leads to
vanishing of correlation eq.(29). Concerning the last point,
however, the situation is changed, when there is finite overlap
of wave functions of two Majorana edge modes, and the topo-
logical degeneracy associated with the fermion number parity
iγ1γ2 = ±1 is lifted. In this case, the value of 〈γ1γ2〉 is deter-
mined by the lowest one of the two state with n12 = 0 and 1. If
the energy splitting between these levels is sufficiently larger
than typical excitation energy of electrons in the attached lead,
the transition between the states with n12 = 0 and 1 is sup-
pressed, and non-local correlation eq.(29) survives. We note
that the correlation eq.(29) is still independent of the distance
between two edges L, though the overlap between the two
Majorana end states depends on L.

A more remarkable non-local correlation effect appears in
a mesoscopic topological superconductor in which the charg-
ing energy effect is not negligible. This sophisticated idea
was first proposed and examined by Fu. We, here, present a
bit modified version of this argument. Let us consider a 1D
mesoscopic-size superconductor which is not grounded, but
a capacitor is inserted between the system and the ground.
Because of the charging energy, the lowest energy state has
a fixed total number of electrons n, which can be controlled
by changing the gate voltage between the capacitor and the
ground. An important point here is that, under this condition,
the phase of the superconducting gap fluctuates, because it
is canonical-conjugate to the charge number. To take account
of this fact, we consider commutation relation for the charge
number operator n̂ and the phase operator φ, i.e. [n̂, φ/2] = −i,
which leads to

[n̂, e±i φ2 ] = ±e±i φ2 . (30)

The operator e±i φ2 is the raising and lowering operator for the
charge number. In fact, denoting the state with the charge
number n as |n〉, we have,

e±i φ2 |n〉 = |n ± 1〉, (31)

which follows from eq.(30). Note that for conventional (non-
topological) superconductors without zero energy Majorana
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where JM is a real constant. In addition to this, there is also
a usual Josephson coupling term for Cooper pair tunneling,
which is expressed as H2t = J cos φ with J a Josephson tun-
neling amplitude. Since the system is isolated, the total charge
number is conserved, and hence, it is an eigen state of the
fermion parity (5); i.e. iγ1γ2 = 1 or −1. As seen from (27),
these parity-eigen state exhibits 4π-periodicity of the Joseph-
son current as a function of φ. This implies that the Joseph-
son current is not carried by Cooper pairs with charge 2e,
but rather by particles with charge e; i.e. ”fractionalizaion”
of Cooper pairs.

The experimental exploration for the 4π-periodic Joseph-
son effect was achieved by ..... They used a quasi-1D nanowire
with proximity-induced-superconductivity for the realization
of topological superconductor. In this case, since there are two
additional Majorana zero-energy end states at two open edges
as well as those at the junction. Thus, the fermion-parity at
the junction is not conserved, but the mutual exchange of
the fermion parity between the junction and the open edges
occurs. In this situation, the transition between two parity-
eigen states occurs, and the periodicity of the Josephson cur-
rent is changed to 2π, which is the same as the conventional
Josephson effect. However, as clarified by San-Jose, Prada,
and Aguado, the 4π-periodicity is partially recovered in the
case of the ac Josephson effect, for which non-adiabatic tran-
sitions between states with the same fermion-parity are al-
lowed. In ref..., the measurement of the Shapiro steps, which
demonstrates the ac Josephson effect, was carried out, and the
double height of the Shapiro steps was observed. This obser-
vation may be a signature of the 4π-periodic Josephson effect.

6. Non-local correlation of Majorana fermions and tele-
portation

As mentioned before, we can interpret the emergence of
a Majorana fermion in a superconductor as splitting up a
complex fermionic field of an electron into real and imag-
inary parts. From this point of view, one may expect non-
local correlation between two spatially separated Majorana
fermions. This is, indeed, the case for certain situations. To
deal with this issue, we consider a simple toy model of
one-dimensional topological superconductor with a Majorana
zero-energy mode localized at the open boundaries of the sys-
tem. We denote Majorana fields for these edge states at x = 0
and L as γ1 and γ2, respectively. For this system, the mode
expansion of an electron operator with spin σ at x, ψσ(x), is
given by

ψσ(x) =
∑

i=1,2

uσi(x)γi + (non-zero energy modes). (28)

The non-local correlation can be immediately seen from
long-distance behaviors of correlation function 〈ψσ(x)ψ†σ(y)〉.
Since uσ1(2) is localized around x = 0 (L), and there are no
low-energy excitations other than the Majorana edge states,
we have, for x ∼ 0 and y ∼ L,

〈ψσ(x)ψ†σ(y)〉 ∼ uσ1(x)u∗σ2(y)〈γ1γ2〉. (29)

As mentioned in the previous sections, the topological su-
perconducting phase is the eigen state of the parity operator
iγ1γ2 = 2n−1 with n12 = ψ

†
12ψ12, as long as the system is iso-

lated. Thus, the correlation function (29) is non-zero even for
|x − y| → ∞, which signifies non-local correlation raised by

the existence of Majorana zero modes. This non-local corre-
lation affects tunneling probability of electrons mediated via
Majorana zero modes in an interesting way. Let us consider
electron tunneling from one end at x = 0 to the other end at
x = L. The tunneling amplitude is proportional to the corre-
lation function (29), which is independent of the distance be-
tween two edges L. This remarkable L-independent behavior
of the tunneling is referred to as ”teleportation”. However, the
experimental detection of this ”teleportation” is a bit tricky is-
sue, because of the following reason. To distinguish whether
an electron detected at x = L comes from the opposite edge at
x = 0 via tunneling or is created from breaking up a Cooper
pair in the superconductor, we need to detect the parity state
of ψ12 simultaneously. Also, we note that this ”teleportation”
does not break causality, because the information of the one
end state, say at x = 0, must be transferred to the observer at
x = L in a classical way to detect the above-mentioned tun-
neling process. Furthermore, to probe the Majorana end state,
one needs to couple the boundary edge with a lead which al-
low electrons coming in and going out, resulting in the fail-
ure of parity conservation. Then, the systems is no longer the
eigen state of γ1γ2, and the average of this operator leads to
vanishing of correlation eq.(29). Concerning the last point,
however, the situation is changed, when there is finite overlap
of wave functions of two Majorana edge modes, and the topo-
logical degeneracy associated with the fermion number parity
iγ1γ2 = ±1 is lifted. In this case, the value of 〈γ1γ2〉 is deter-
mined by the lowest one of the two state with n12 = 0 and 1. If
the energy splitting between these levels is sufficiently larger
than typical excitation energy of electrons in the attached lead,
the transition between the states with n12 = 0 and 1 is sup-
pressed, and non-local correlation eq.(29) survives. We note
that the correlation eq.(29) is still independent of the distance
between two edges L, though the overlap between the two
Majorana end states depends on L.

A more remarkable non-local correlation effect appears in
a mesoscopic topological superconductor in which the charg-
ing energy effect is not negligible. This sophisticated idea
was first proposed and examined by Fu. We, here, present a
bit modified version of this argument. Let us consider a 1D
mesoscopic-size superconductor which is not grounded, but
a capacitor is inserted between the system and the ground.
Because of the charging energy, the lowest energy state has
a fixed total number of electrons n, which can be controlled
by changing the gate voltage between the capacitor and the
ground. An important point here is that, under this condition,
the phase of the superconducting gap fluctuates, because it
is canonical-conjugate to the charge number. To take account
of this fact, we consider commutation relation for the charge
number operator n̂ and the phase operator φ, i.e. [n̂, φ/2] = −i,
which leads to

[n̂, e±i φ2 ] = ±e±i φ2 . (30)

The operator e±i φ2 is the raising and lowering operator for the
charge number. In fact, denoting the state with the charge
number n as |n〉, we have,

e±i φ2 |n〉 = |n ± 1〉, (31)

which follows from eq.(30). Note that for conventional (non-
topological) superconductors without zero energy Majorana

6

J. Phys. Soc. Jpn. INVITED REVIEW PAPERS
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lation function (29), which is independent of the distance be-
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sue, because of the following reason. To distinguish whether
an electron detected at x = L comes from the opposite edge at
x = 0 via tunneling or is created from breaking up a Cooper
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does not break causality, because the information of the one
end state, say at x = 0, must be transferred to the observer at
x = L in a classical way to detect the above-mentioned tun-
neling process. Furthermore, to probe the Majorana end state,
one needs to couple the boundary edge with a lead which al-
low electrons coming in and going out, resulting in the fail-
ure of parity conservation. Then, the systems is no longer the
eigen state of γ1γ2, and the average of this operator leads to
vanishing of correlation eq.(29). Concerning the last point,
however, the situation is changed, when there is finite overlap
of wave functions of two Majorana edge modes, and the topo-
logical degeneracy associated with the fermion number parity
iγ1γ2 = ±1 is lifted. In this case, the value of 〈γ1γ2〉 is deter-
mined by the lowest one of the two state with n12 = 0 and 1. If
the energy splitting between these levels is sufficiently larger
than typical excitation energy of electrons in the attached lead,
the transition between the states with n12 = 0 and 1 is sup-
pressed, and non-local correlation eq.(29) survives. We note
that the correlation eq.(29) is still independent of the distance
between two edges L, though the overlap between the two
Majorana end states depends on L.

A more remarkable non-local correlation effect appears in
a mesoscopic topological superconductor in which the charg-
ing energy effect is not negligible. This sophisticated idea
was first proposed and examined by Fu. We, here, present a
bit modified version of this argument. Let us consider a 1D
mesoscopic-size superconductor which is not grounded, but
a capacitor is inserted between the system and the ground.
Because of the charging energy, the lowest energy state has
a fixed total number of electrons n, which can be controlled
by changing the gate voltage between the capacitor and the
ground. An important point here is that, under this condition,
the phase of the superconducting gap fluctuates, because it
is canonical-conjugate to the charge number. To take account
of this fact, we consider commutation relation for the charge
number operator n̂ and the phase operator φ, i.e. [n̂, φ/2] = −i,
which leads to
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The operator e±i φ2 is the raising and lowering operator for the
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e±i φ2 |n〉 = |n ± 1〉, (31)

which follows from eq.(30). Note that for conventional (non-
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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where JM is a real constant. In addition to this, there is also
a usual Josephson coupling term for Cooper pair tunneling,
which is expressed as H2t = J cos φ with J a Josephson tun-
neling amplitude. Since the system is isolated, the total charge
number is conserved, and hence, it is an eigen state of the
fermion parity (5); i.e. iγ1γ2 = 1 or −1. As seen from (27),
these parity-eigen state exhibits 4π-periodicity of the Joseph-
son current as a function of φ. This implies that the Joseph-
son current is not carried by Cooper pairs with charge 2e,
but rather by particles with charge e; i.e. ”fractionalizaion”
of Cooper pairs.

The experimental exploration for the 4π-periodic Joseph-
son effect was achieved by ..... They used a quasi-1D nanowire
with proximity-induced-superconductivity for the realization
of topological superconductor. In this case, since there are two
additional Majorana zero-energy end states at two open edges
as well as those at the junction. Thus, the fermion-parity at
the junction is not conserved, but the mutual exchange of
the fermion parity between the junction and the open edges
occurs. In this situation, the transition between two parity-
eigen states occurs, and the periodicity of the Josephson cur-
rent is changed to 2π, which is the same as the conventional
Josephson effect. However, as clarified by San-Jose, Prada,
and Aguado, the 4π-periodicity is partially recovered in the
case of the ac Josephson effect, for which non-adiabatic tran-
sitions between states with the same fermion-parity are al-
lowed. In ref..., the measurement of the Shapiro steps, which
demonstrates the ac Josephson effect, was carried out, and the
double height of the Shapiro steps was observed. This obser-
vation may be a signature of the 4π-periodic Josephson effect.

6. Non-local correlation of Majorana fermions and tele-
portation

As mentioned before, we can interpret the emergence of
a Majorana fermion in a superconductor as splitting up a
complex fermionic field of an electron into real and imag-
inary parts. From this point of view, one may expect non-
local correlation between two spatially separated Majorana
fermions. This is, indeed, the case for certain situations. To
deal with this issue, we consider a simple toy model of
one-dimensional topological superconductor with a Majorana
zero-energy mode localized at the open boundaries of the sys-
tem. We denote Majorana fields for these edge states at x = 0
and L as γ1 and γ2, respectively. For this system, the mode
expansion of an electron operator with spin σ at x, ψσ(x), is
given by

ψσ(x) =
∑

i=1,2

uσi(x)γi + (non-zero energy modes). (28)

The non-local correlation can be immediately seen from
long-distance behaviors of correlation function 〈ψσ(x)ψ†σ(y)〉.
Since uσ1(2) is localized around x = 0 (L), and there are no
low-energy excitations other than the Majorana edge states,
we have, for x ∼ 0 and y ∼ L,

〈ψσ(x)ψ†σ(y)〉 ∼ uσ1(x)u∗σ2(y)〈γ1γ2〉. (29)

As mentioned in the previous sections, the topological su-
perconducting phase is the eigen state of the parity operator
iγ1γ2 = 2n−1 with n12 = ψ

†
12ψ12, as long as the system is iso-

lated. Thus, the correlation function (29) is non-zero even for
|x − y| → ∞, which signifies non-local correlation raised by

the existence of Majorana zero modes. This non-local corre-
lation affects tunneling probability of electrons mediated via
Majorana zero modes in an interesting way. Let us consider
electron tunneling from one end at x = 0 to the other end at
x = L. The tunneling amplitude is proportional to the corre-
lation function (29), which is independent of the distance be-
tween two edges L. This remarkable L-independent behavior
of the tunneling is referred to as ”teleportation”. However, the
experimental detection of this ”teleportation” is a bit tricky is-
sue, because of the following reason. To distinguish whether
an electron detected at x = L comes from the opposite edge at
x = 0 via tunneling or is created from breaking up a Cooper
pair in the superconductor, we need to detect the parity state
of ψ12 simultaneously. Also, we note that this ”teleportation”
does not break causality, because the information of the one
end state, say at x = 0, must be transferred to the observer at
x = L in a classical way to detect the above-mentioned tun-
neling process. Furthermore, to probe the Majorana end state,
one needs to couple the boundary edge with a lead which al-
low electrons coming in and going out, resulting in the fail-
ure of parity conservation. Then, the systems is no longer the
eigen state of γ1γ2, and the average of this operator leads to
vanishing of correlation eq.(29). Concerning the last point,
however, the situation is changed, when there is finite overlap
of wave functions of two Majorana edge modes, and the topo-
logical degeneracy associated with the fermion number parity
iγ1γ2 = ±1 is lifted. In this case, the value of 〈γ1γ2〉 is deter-
mined by the lowest one of the two state with n12 = 0 and 1. If
the energy splitting between these levels is sufficiently larger
than typical excitation energy of electrons in the attached lead,
the transition between the states with n12 = 0 and 1 is sup-
pressed, and non-local correlation eq.(29) survives. We note
that the correlation eq.(29) is still independent of the distance
between two edges L, though the overlap between the two
Majorana end states depends on L.

A more remarkable non-local correlation effect appears in
a mesoscopic topological superconductor in which the charg-
ing energy effect is not negligible. This sophisticated idea
was first proposed and examined by Fu. We, here, present a
bit modified version of this argument. Let us consider a 1D
mesoscopic-size superconductor which is not grounded, but
a capacitor is inserted between the system and the ground.
Because of the charging energy, the lowest energy state has
a fixed total number of electrons n, which can be controlled
by changing the gate voltage between the capacitor and the
ground. An important point here is that, under this condition,
the phase of the superconducting gap fluctuates, because it
is canonical-conjugate to the charge number. To take account
of this fact, we consider commutation relation for the charge
number operator n̂ and the phase operator φ, i.e. [n̂, φ/2] = −i,
which leads to

[n̂, e±i φ2 ] = ±e±i φ2 . (30)

The operator e±i φ2 is the raising and lowering operator for the
charge number. In fact, denoting the state with the charge
number n as |n〉, we have,

e±i φ2 |n〉 = |n ± 1〉, (31)

which follows from eq.(30). Note that for conventional (non-
topological) superconductors without zero energy Majorana
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where JM is a real constant. In addition to this, there is also
a usual Josephson coupling term for Cooper pair tunneling,
which is expressed as H2t = J cos φ with J a Josephson tun-
neling amplitude. Since the system is isolated, the total charge
number is conserved, and hence, it is an eigen state of the
fermion parity (5); i.e. iγ1γ2 = 1 or −1. As seen from (27),
these parity-eigen state exhibits 4π-periodicity of the Joseph-
son current as a function of φ. This implies that the Joseph-
son current is not carried by Cooper pairs with charge 2e,
but rather by particles with charge e; i.e. ”fractionalizaion”
of Cooper pairs.

The experimental exploration for the 4π-periodic Joseph-
son effect was achieved by ..... They used a quasi-1D nanowire
with proximity-induced-superconductivity for the realization
of topological superconductor. In this case, since there are two
additional Majorana zero-energy end states at two open edges
as well as those at the junction. Thus, the fermion-parity at
the junction is not conserved, but the mutual exchange of
the fermion parity between the junction and the open edges
occurs. In this situation, the transition between two parity-
eigen states occurs, and the periodicity of the Josephson cur-
rent is changed to 2π, which is the same as the conventional
Josephson effect. However, as clarified by San-Jose, Prada,
and Aguado, the 4π-periodicity is partially recovered in the
case of the ac Josephson effect, for which non-adiabatic tran-
sitions between states with the same fermion-parity are al-
lowed. In ref..., the measurement of the Shapiro steps, which
demonstrates the ac Josephson effect, was carried out, and the
double height of the Shapiro steps was observed. This obser-
vation may be a signature of the 4π-periodic Josephson effect.

6. Non-local correlation of Majorana fermions and tele-
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As mentioned before, we can interpret the emergence of
a Majorana fermion in a superconductor as splitting up a
complex fermionic field of an electron into real and imag-
inary parts. From this point of view, one may expect non-
local correlation between two spatially separated Majorana
fermions. This is, indeed, the case for certain situations. To
deal with this issue, we consider a simple toy model of
one-dimensional topological superconductor with a Majorana
zero-energy mode localized at the open boundaries of the sys-
tem. We denote Majorana fields for these edge states at x = 0
and L as γ1 and γ2, respectively. For this system, the mode
expansion of an electron operator with spin σ at x, ψσ(x), is
given by
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uσi(x)γi + (non-zero energy modes). (28)

The non-local correlation can be immediately seen from
long-distance behaviors of correlation function 〈ψσ(x)ψ†σ(y)〉.
Since uσ1(2) is localized around x = 0 (L), and there are no
low-energy excitations other than the Majorana edge states,
we have, for x ∼ 0 and y ∼ L,
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As mentioned in the previous sections, the topological su-
perconducting phase is the eigen state of the parity operator
iγ1γ2 = 2n−1 with n12 = ψ
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12ψ12, as long as the system is iso-

lated. Thus, the correlation function (29) is non-zero even for
|x − y| → ∞, which signifies non-local correlation raised by

the existence of Majorana zero modes. This non-local corre-
lation affects tunneling probability of electrons mediated via
Majorana zero modes in an interesting way. Let us consider
electron tunneling from one end at x = 0 to the other end at
x = L. The tunneling amplitude is proportional to the corre-
lation function (29), which is independent of the distance be-
tween two edges L. This remarkable L-independent behavior
of the tunneling is referred to as ”teleportation”. However, the
experimental detection of this ”teleportation” is a bit tricky is-
sue, because of the following reason. To distinguish whether
an electron detected at x = L comes from the opposite edge at
x = 0 via tunneling or is created from breaking up a Cooper
pair in the superconductor, we need to detect the parity state
of ψ12 simultaneously. Also, we note that this ”teleportation”
does not break causality, because the information of the one
end state, say at x = 0, must be transferred to the observer at
x = L in a classical way to detect the above-mentioned tun-
neling process. Furthermore, to probe the Majorana end state,
one needs to couple the boundary edge with a lead which al-
low electrons coming in and going out, resulting in the fail-
ure of parity conservation. Then, the systems is no longer the
eigen state of γ1γ2, and the average of this operator leads to
vanishing of correlation eq.(29). Concerning the last point,
however, the situation is changed, when there is finite overlap
of wave functions of two Majorana edge modes, and the topo-
logical degeneracy associated with the fermion number parity
iγ1γ2 = ±1 is lifted. In this case, the value of 〈γ1γ2〉 is deter-
mined by the lowest one of the two state with n12 = 0 and 1. If
the energy splitting between these levels is sufficiently larger
than typical excitation energy of electrons in the attached lead,
the transition between the states with n12 = 0 and 1 is sup-
pressed, and non-local correlation eq.(29) survives. We note
that the correlation eq.(29) is still independent of the distance
between two edges L, though the overlap between the two
Majorana end states depends on L.

A more remarkable non-local correlation effect appears in
a mesoscopic topological superconductor in which the charg-
ing energy effect is not negligible. This sophisticated idea
was first proposed and examined by Fu. We, here, present a
bit modified version of this argument. Let us consider a 1D
mesoscopic-size superconductor which is not grounded, but
a capacitor is inserted between the system and the ground.
Because of the charging energy, the lowest energy state has
a fixed total number of electrons n, which can be controlled
by changing the gate voltage between the capacitor and the
ground. An important point here is that, under this condition,
the phase of the superconducting gap fluctuates, because it
is canonical-conjugate to the charge number. To take account
of this fact, we consider commutation relation for the charge
number operator n̂ and the phase operator φ, i.e. [n̂, φ/2] = −i,
which leads to

[n̂, e±i φ2 ] = ±e±i φ2 . (30)

The operator e±i φ2 is the raising and lowering operator for the
charge number. In fact, denoting the state with the charge
number n as |n〉, we have,

e±i φ2 |n〉 = |n ± 1〉, (31)

which follows from eq.(30). Note that for conventional (non-
topological) superconductors without zero energy Majorana
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where JM is a real constant. In addition to this, there is also
a usual Josephson coupling term for Cooper pair tunneling,
which is expressed as H2t = J cos φ with J a Josephson tun-
neling amplitude. Since the system is isolated, the total charge
number is conserved, and hence, it is an eigen state of the
fermion parity (5); i.e. iγ1γ2 = 1 or −1. As seen from (27),
these parity-eigen state exhibits 4π-periodicity of the Joseph-
son current as a function of φ. This implies that the Joseph-
son current is not carried by Cooper pairs with charge 2e,
but rather by particles with charge e; i.e. ”fractionalizaion”
of Cooper pairs.

The experimental exploration for the 4π-periodic Joseph-
son effect was achieved by ..... They used a quasi-1D nanowire
with proximity-induced-superconductivity for the realization
of topological superconductor. In this case, since there are two
additional Majorana zero-energy end states at two open edges
as well as those at the junction. Thus, the fermion-parity at
the junction is not conserved, but the mutual exchange of
the fermion parity between the junction and the open edges
occurs. In this situation, the transition between two parity-
eigen states occurs, and the periodicity of the Josephson cur-
rent is changed to 2π, which is the same as the conventional
Josephson effect. However, as clarified by San-Jose, Prada,
and Aguado, the 4π-periodicity is partially recovered in the
case of the ac Josephson effect, for which non-adiabatic tran-
sitions between states with the same fermion-parity are al-
lowed. In ref..., the measurement of the Shapiro steps, which
demonstrates the ac Josephson effect, was carried out, and the
double height of the Shapiro steps was observed. This obser-
vation may be a signature of the 4π-periodic Josephson effect.

6. Non-local correlation of Majorana fermions and tele-
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As mentioned before, we can interpret the emergence of
a Majorana fermion in a superconductor as splitting up a
complex fermionic field of an electron into real and imag-
inary parts. From this point of view, one may expect non-
local correlation between two spatially separated Majorana
fermions. This is, indeed, the case for certain situations. To
deal with this issue, we consider a simple toy model of
one-dimensional topological superconductor with a Majorana
zero-energy mode localized at the open boundaries of the sys-
tem. We denote Majorana fields for these edge states at x = 0
and L as γ1 and γ2, respectively. For this system, the mode
expansion of an electron operator with spin σ at x, ψσ(x), is
given by

ψσ(x) =
∑

i=1,2

uσi(x)γi + (non-zero energy modes). (28)

The non-local correlation can be immediately seen from
long-distance behaviors of correlation function 〈ψσ(x)ψ†σ(y)〉.
Since uσ1(2) is localized around x = 0 (L), and there are no
low-energy excitations other than the Majorana edge states,
we have, for x ∼ 0 and y ∼ L,

〈ψσ(x)ψ†σ(y)〉 ∼ uσ1(x)u∗σ2(y)〈γ1γ2〉. (29)

As mentioned in the previous sections, the topological su-
perconducting phase is the eigen state of the parity operator
iγ1γ2 = 2n−1 with n12 = ψ

†
12ψ12, as long as the system is iso-

lated. Thus, the correlation function (29) is non-zero even for
|x − y| → ∞, which signifies non-local correlation raised by

the existence of Majorana zero modes. This non-local corre-
lation affects tunneling probability of electrons mediated via
Majorana zero modes in an interesting way. Let us consider
electron tunneling from one end at x = 0 to the other end at
x = L. The tunneling amplitude is proportional to the corre-
lation function (29), which is independent of the distance be-
tween two edges L. This remarkable L-independent behavior
of the tunneling is referred to as ”teleportation”. However, the
experimental detection of this ”teleportation” is a bit tricky is-
sue, because of the following reason. To distinguish whether
an electron detected at x = L comes from the opposite edge at
x = 0 via tunneling or is created from breaking up a Cooper
pair in the superconductor, we need to detect the parity state
of ψ12 simultaneously. Also, we note that this ”teleportation”
does not break causality, because the information of the one
end state, say at x = 0, must be transferred to the observer at
x = L in a classical way to detect the above-mentioned tun-
neling process. Furthermore, to probe the Majorana end state,
one needs to couple the boundary edge with a lead which al-
low electrons coming in and going out, resulting in the fail-
ure of parity conservation. Then, the systems is no longer the
eigen state of γ1γ2, and the average of this operator leads to
vanishing of correlation eq.(29). Concerning the last point,
however, the situation is changed, when there is finite overlap
of wave functions of two Majorana edge modes, and the topo-
logical degeneracy associated with the fermion number parity
iγ1γ2 = ±1 is lifted. In this case, the value of 〈γ1γ2〉 is deter-
mined by the lowest one of the two state with n12 = 0 and 1. If
the energy splitting between these levels is sufficiently larger
than typical excitation energy of electrons in the attached lead,
the transition between the states with n12 = 0 and 1 is sup-
pressed, and non-local correlation eq.(29) survives. We note
that the correlation eq.(29) is still independent of the distance
between two edges L, though the overlap between the two
Majorana end states depends on L.

A more remarkable non-local correlation effect appears in
a mesoscopic topological superconductor in which the charg-
ing energy effect is not negligible. This sophisticated idea
was first proposed and examined by Fu. We, here, present a
bit modified version of this argument. Let us consider a 1D
mesoscopic-size superconductor which is not grounded, but
a capacitor is inserted between the system and the ground.
Because of the charging energy, the lowest energy state has
a fixed total number of electrons n, which can be controlled
by changing the gate voltage between the capacitor and the
ground. An important point here is that, under this condition,
the phase of the superconducting gap fluctuates, because it
is canonical-conjugate to the charge number. To take account
of this fact, we consider commutation relation for the charge
number operator n̂ and the phase operator φ, i.e. [n̂, φ/2] = −i,
which leads to

[n̂, e±i φ2 ] = ±e±i φ2 . (30)

The operator e±i φ2 is the raising and lowering operator for the
charge number. In fact, denoting the state with the charge
number n as |n〉, we have,

e±i φ2 |n〉 = |n ± 1〉, (31)

which follows from eq.(30). Note that for conventional (non-
topological) superconductors without zero energy Majorana
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
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γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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(ii) Coupling with leads or dots to probe “teleportation” breaks 
Fermion-parity conservation
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
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Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
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that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,
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sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =
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s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
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γiγ j

)
=
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(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
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2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−
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2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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where JM is a real constant. In addition to this, there is also
a usual Josephson coupling term for Cooper pair tunneling,
which is expressed as H2t = J cos φ with J a Josephson tun-
neling amplitude. Since the system is isolated, the total charge
number is conserved, and hence, it is an eigen state of the
fermion parity (5); i.e. iγ1γ2 = 1 or −1. As seen from (27),
these parity-eigen state exhibits 4π-periodicity of the Joseph-
son current as a function of φ. This implies that the Joseph-
son current is not carried by Cooper pairs with charge 2e,
but rather by particles with charge e; i.e. ”fractionalizaion”
of Cooper pairs.

The experimental exploration for the 4π-periodic Joseph-
son effect was achieved by ..... They used a quasi-1D nanowire
with proximity-induced-superconductivity for the realization
of topological superconductor. In this case, since there are two
additional Majorana zero-energy end states at two open edges
as well as those at the junction. Thus, the fermion-parity at
the junction is not conserved, but the mutual exchange of
the fermion parity between the junction and the open edges
occurs. In this situation, the transition between two parity-
eigen states occurs, and the periodicity of the Josephson cur-
rent is changed to 2π, which is the same as the conventional
Josephson effect. However, as clarified by San-Jose, Prada,
and Aguado, the 4π-periodicity is partially recovered in the
case of the ac Josephson effect, for which non-adiabatic tran-
sitions between states with the same fermion-parity are al-
lowed. In ref..., the measurement of the Shapiro steps, which
demonstrates the ac Josephson effect, was carried out, and the
double height of the Shapiro steps was observed. This obser-
vation may be a signature of the 4π-periodic Josephson effect.

6. Non-local correlation of Majorana fermions and tele-
portation

As mentioned before, we can interpret the emergence of
a Majorana fermion in a superconductor as splitting up a
complex fermionic field of an electron into real and imag-
inary parts. From this point of view, one may expect non-
local correlation between two spatially separated Majorana
fermions. This is, indeed, the case for certain situations. To
deal with this issue, we consider a simple toy model of
one-dimensional topological superconductor with a Majorana
zero-energy mode localized at the open boundaries of the sys-
tem. We denote Majorana fields for these edge states at x = 0
and L as γ1 and γ2, respectively. For this system, the mode
expansion of an electron operator with spin σ at x, ψσ(x), is
given by

ψσ(x) =
∑

i=1,2

uσi(x)γi + (non-zero energy modes). (28)

The non-local correlation can be immediately seen from
long-distance behaviors of correlation function 〈ψσ(x)ψ†σ(y)〉.
Since uσ1(2) is localized around x = 0 (L), and there are no
low-energy excitations other than the Majorana edge states,
we have, for x ∼ 0 and y ∼ L,

〈ψσ(x)ψ†σ(y)〉 ∼ uσ1(x)u∗σ2(y)〈γ1γ2〉. (29)

As mentioned in the previous sections, the topological su-
perconducting phase is the eigen state of the parity operator
iγ1γ2 = 2n−1 with n12 = ψ

†
12ψ12, as long as the system is iso-

lated. Thus, the correlation function (29) is non-zero even for
|x − y| → ∞, which signifies non-local correlation raised by

the existence of Majorana zero modes. This non-local corre-
lation affects tunneling probability of electrons mediated via
Majorana zero modes in an interesting way. Let us consider
electron tunneling from one end at x = 0 to the other end at
x = L. The tunneling amplitude is proportional to the corre-
lation function (29), which is independent of the distance be-
tween two edges L. This remarkable L-independent behavior
of the tunneling is referred to as ”teleportation”. However, the
experimental detection of this ”teleportation” is a bit tricky is-
sue, because of the following reason. To distinguish whether
an electron detected at x = L comes from the opposite edge at
x = 0 via tunneling or is created from breaking up a Cooper
pair in the superconductor, we need to detect the parity state
of ψ12 simultaneously. Also, we note that this ”teleportation”
does not break causality, because the information of the one
end state, say at x = 0, must be transferred to the observer at
x = L in a classical way to detect the above-mentioned tun-
neling process. Furthermore, to probe the Majorana end state,
one needs to couple the boundary edge with a lead which al-
low electrons coming in and going out, resulting in the fail-
ure of parity conservation. Then, the systems is no longer the
eigen state of γ1γ2, and the average of this operator leads to
vanishing of correlation eq.(29). Concerning the last point,
however, the situation is changed, when there is finite overlap
of wave functions of two Majorana edge modes, and the topo-
logical degeneracy associated with the fermion number parity
iγ1γ2 = ±1 is lifted. In this case, the value of 〈γ1γ2〉 is deter-
mined by the lowest one of the two state with n12 = 0 and 1. If
the energy splitting between these levels is sufficiently larger
than typical excitation energy of electrons in the attached lead,
the transition between the states with n12 = 0 and 1 is sup-
pressed, and non-local correlation eq.(29) survives. We note
that the correlation eq.(29) is still independent of the distance
between two edges L, though the overlap between the two
Majorana end states depends on L.

A more remarkable non-local correlation effect appears in
a mesoscopic topological superconductor in which the charg-
ing energy effect is not negligible. This sophisticated idea
was first proposed and examined by Fu. We, here, present a
bit modified version of this argument. Let us consider a 1D
mesoscopic-size superconductor which is not grounded, but
a capacitor is inserted between the system and the ground.
Because of the charging energy, the lowest energy state has
a fixed total number of electrons n, which can be controlled
by changing the gate voltage between the capacitor and the
ground. An important point here is that, under this condition,
the phase of the superconducting gap fluctuates, because it
is canonical-conjugate to the charge number. To take account
of this fact, we consider commutation relation for the charge
number operator n̂ and the phase operator φ, i.e. [n̂, φ/2] = −i,
which leads to

[n̂, e±i φ2 ] = ±e±i φ2 . (30)

The operator e±i φ2 is the raising and lowering operator for the
charge number. In fact, denoting the state with the charge
number n as |n〉, we have,

e±i φ2 |n〉 = |n ± 1〉, (31)

which follows from eq.(30). Note that for conventional (non-
topological) superconductors without zero energy Majorana
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
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−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
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n12, we obtain,
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Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ
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2 = 1, and γ2
1 = 1, we have s1 = 1 or
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total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
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that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2
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is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)
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holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
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and γ4. Let us see what happens when the Majorana fermion
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and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,
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We can verify that σx,y,z defined above actually satisfy the
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ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
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sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,
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Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π
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γiγ j

)
=
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(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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where JM is a real constant. In addition to this, there is also
a usual Josephson coupling term for Cooper pair tunneling,
which is expressed as H2t = J cos φ with J a Josephson tun-
neling amplitude. Since the system is isolated, the total charge
number is conserved, and hence, it is an eigen state of the
fermion parity (5); i.e. iγ1γ2 = 1 or −1. As seen from (27),
these parity-eigen state exhibits 4π-periodicity of the Joseph-
son current as a function of φ. This implies that the Joseph-
son current is not carried by Cooper pairs with charge 2e,
but rather by particles with charge e; i.e. ”fractionalizaion”
of Cooper pairs.

The experimental exploration for the 4π-periodic Joseph-
son effect was achieved by ..... They used a quasi-1D nanowire
with proximity-induced-superconductivity for the realization
of topological superconductor. In this case, since there are two
additional Majorana zero-energy end states at two open edges
as well as those at the junction. Thus, the fermion-parity at
the junction is not conserved, but the mutual exchange of
the fermion parity between the junction and the open edges
occurs. In this situation, the transition between two parity-
eigen states occurs, and the periodicity of the Josephson cur-
rent is changed to 2π, which is the same as the conventional
Josephson effect. However, as clarified by San-Jose, Prada,
and Aguado, the 4π-periodicity is partially recovered in the
case of the ac Josephson effect, for which non-adiabatic tran-
sitions between states with the same fermion-parity are al-
lowed. In ref..., the measurement of the Shapiro steps, which
demonstrates the ac Josephson effect, was carried out, and the
double height of the Shapiro steps was observed. This obser-
vation may be a signature of the 4π-periodic Josephson effect.

6. Non-local correlation of Majorana fermions and tele-
portation

As mentioned before, we can interpret the emergence of
a Majorana fermion in a superconductor as splitting up a
complex fermionic field of an electron into real and imag-
inary parts. From this point of view, one may expect non-
local correlation between two spatially separated Majorana
fermions. This is, indeed, the case for certain situations. To
deal with this issue, we consider a simple toy model of
one-dimensional topological superconductor with a Majorana
zero-energy mode localized at the open boundaries of the sys-
tem. We denote Majorana fields for these edge states at x = 0
and L as γ1 and γ2, respectively. For this system, the mode
expansion of an electron operator with spin σ at x, ψσ(x), is
given by

ψσ(x) =
∑

i=1,2

uσi(x)γi + (non-zero energy modes). (28)

The non-local correlation can be immediately seen from
long-distance behaviors of correlation function 〈ψσ(x)ψ†σ(y)〉.
Since uσ1(2) is localized around x = 0 (L), and there are no
low-energy excitations other than the Majorana edge states,
we have, for x ∼ 0 and y ∼ L,

〈ψσ(x)ψ†σ(y)〉 ∼ uσ1(x)u∗σ2(y)〈γ1γ2〉. (29)

As mentioned in the previous sections, the topological su-
perconducting phase is the eigen state of the parity operator
iγ1γ2 = 2n−1 with n12 = ψ

†
12ψ12, as long as the system is iso-

lated. Thus, the correlation function (29) is non-zero even for
|x − y| → ∞, which signifies non-local correlation raised by

the existence of Majorana zero modes. This non-local corre-
lation affects tunneling probability of electrons mediated via
Majorana zero modes in an interesting way. Let us consider
electron tunneling from one end at x = 0 to the other end at
x = L. The tunneling amplitude is proportional to the corre-
lation function (29), which is independent of the distance be-
tween two edges L. This remarkable L-independent behavior
of the tunneling is referred to as ”teleportation”. However, the
experimental detection of this ”teleportation” is a bit tricky is-
sue, because of the following reason. To distinguish whether
an electron detected at x = L comes from the opposite edge at
x = 0 via tunneling or is created from breaking up a Cooper
pair in the superconductor, we need to detect the parity state
of ψ12 simultaneously. Also, we note that this ”teleportation”
does not break causality, because the information of the one
end state, say at x = 0, must be transferred to the observer at
x = L in a classical way to detect the above-mentioned tun-
neling process. Furthermore, to probe the Majorana end state,
one needs to couple the boundary edge with a lead which al-
low electrons coming in and going out, resulting in the fail-
ure of parity conservation. Then, the systems is no longer the
eigen state of γ1γ2, and the average of this operator leads to
vanishing of correlation eq.(29). Concerning the last point,
however, the situation is changed, when there is finite overlap
of wave functions of two Majorana edge modes, and the topo-
logical degeneracy associated with the fermion number parity
iγ1γ2 = ±1 is lifted. In this case, the value of 〈γ1γ2〉 is deter-
mined by the lowest one of the two state with n12 = 0 and 1. If
the energy splitting between these levels is sufficiently larger
than typical excitation energy of electrons in the attached lead,
the transition between the states with n12 = 0 and 1 is sup-
pressed, and non-local correlation eq.(29) survives. We note
that the correlation eq.(29) is still independent of the distance
between two edges L, though the overlap between the two
Majorana end states depends on L.

A more remarkable non-local correlation effect appears in
a mesoscopic topological superconductor in which the charg-
ing energy effect is not negligible. This sophisticated idea
was first proposed and examined by Fu. We, here, present a
bit modified version of this argument. Let us consider a 1D
mesoscopic-size superconductor which is not grounded, but
a capacitor is inserted between the system and the ground.
Because of the charging energy, the lowest energy state has
a fixed total number of electrons n, which can be controlled
by changing the gate voltage between the capacitor and the
ground. An important point here is that, under this condition,
the phase of the superconducting gap fluctuates, because it
is canonical-conjugate to the charge number. To take account
of this fact, we consider commutation relation for the charge
number operator n̂ and the phase operator φ, i.e. [n̂, φ/2] = −i,
which leads to

[n̂, e±i φ2 ] = ±e±i φ2 . (30)

The operator e±i φ2 is the raising and lowering operator for the
charge number. In fact, denoting the state with the charge
number n as |n〉, we have,

e±i φ2 |n〉 = |n ± 1〉, (31)

which follows from eq.(30). Note that for conventional (non-
topological) superconductors without zero energy Majorana
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However, situation changes, when Fermion-parity degeneracy is lifted by
overlap of Majorana-zero-mode wave functions.
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where JM is a real constant. In addition to this, there is also
a usual Josephson coupling term for Cooper pair tunneling,
which is expressed as H2t = J cos φ with J a Josephson tun-
neling amplitude. Since the system is isolated, the total charge
number is conserved, and hence, it is an eigen state of the
fermion parity (5); i.e. iγ1γ2 = 1 or −1. As seen from (27),
these parity-eigen state exhibits 4π-periodicity of the Joseph-
son current as a function of φ. This implies that the Joseph-
son current is not carried by Cooper pairs with charge 2e,
but rather by particles with charge e; i.e. ”fractionalizaion”
of Cooper pairs.

The experimental exploration for the 4π-periodic Joseph-
son effect was achieved by ..... They used a quasi-1D nanowire
with proximity-induced-superconductivity for the realization
of topological superconductor. In this case, since there are two
additional Majorana zero-energy end states at two open edges
as well as those at the junction. Thus, the fermion-parity at
the junction is not conserved, but the mutual exchange of
the fermion parity between the junction and the open edges
occurs. In this situation, the transition between two parity-
eigen states occurs, and the periodicity of the Josephson cur-
rent is changed to 2π, which is the same as the conventional
Josephson effect. However, as clarified by San-Jose, Prada,
and Aguado, the 4π-periodicity is partially recovered in the
case of the ac Josephson effect, for which non-adiabatic tran-
sitions between states with the same fermion-parity are al-
lowed. In ref..., the measurement of the Shapiro steps, which
demonstrates the ac Josephson effect, was carried out, and the
double height of the Shapiro steps was observed. This obser-
vation may be a signature of the 4π-periodic Josephson effect.

6. Non-local correlation of Majorana fermions and tele-
portation

As mentioned before, we can interpret the emergence of
a Majorana fermion in a superconductor as splitting up a
complex fermionic field of an electron into real and imag-
inary parts. From this point of view, one may expect non-
local correlation between two spatially separated Majorana
fermions. This is, indeed, the case for certain situations. To
deal with this issue, we consider a simple toy model of
one-dimensional topological superconductor with a Majorana
zero-energy mode localized at the open boundaries of the sys-
tem. We denote Majorana fields for these edge states at x = 0
and L as γ1 and γ2, respectively. For this system, the mode
expansion of an electron operator with spin σ at x, ψσ(x), is
given by

ψσ(x) =
∑

i=1,2

uσi(x)γi + (non-zero energy modes). (28)

The non-local correlation can be immediately seen from
long-distance behaviors of correlation function 〈ψσ(x)ψ†σ(y)〉.
Since uσ1(2) is localized around x = 0 (L), and there are no
low-energy excitations other than the Majorana edge states,
we have, for x ∼ 0 and y ∼ L,

〈ψσ(x)ψ†σ(y)〉 ∼ uσ1(x)u∗σ2(y)〈γ1γ2〉. (29)

As mentioned in the previous sections, the topological su-
perconducting phase is the eigen state of the parity operator
iγ1γ2 = 2n−1 with n12 = ψ

†
12ψ12, as long as the system is iso-

lated. Thus, the correlation function (29) is non-zero even for
|x − y| → ∞, which signifies non-local correlation raised by

the existence of Majorana zero modes. This non-local corre-
lation affects tunneling probability of electrons mediated via
Majorana zero modes in an interesting way. Let us consider
electron tunneling from one end at x = 0 to the other end at
x = L. The tunneling amplitude is proportional to the corre-
lation function (29), which is independent of the distance be-
tween two edges L. This remarkable L-independent behavior
of the tunneling is referred to as ”teleportation”. However, the
experimental detection of this ”teleportation” is a bit tricky is-
sue, because of the following reason. To distinguish whether
an electron detected at x = L comes from the opposite edge at
x = 0 via tunneling or is created from breaking up a Cooper
pair in the superconductor, we need to detect the parity state
of ψ12 simultaneously. Also, we note that this ”teleportation”
does not break causality, because the information of the one
end state, say at x = 0, must be transferred to the observer at
x = L in a classical way to detect the above-mentioned tun-
neling process. Furthermore, to probe the Majorana end state,
one needs to couple the boundary edge with a lead which al-
low electrons coming in and going out, resulting in the fail-
ure of parity conservation. Then, the systems is no longer the
eigen state of γ1γ2, and the average of this operator leads to
vanishing of correlation eq.(29). Concerning the last point,
however, the situation is changed, when there is finite overlap
of wave functions of two Majorana edge modes, and the topo-
logical degeneracy associated with the fermion number parity
iγ1γ2 = ±1 is lifted. In this case, the value of 〈γ1γ2〉 is deter-
mined by the lowest one of the two state with n12 = 0 and 1. If
the energy splitting between these levels is sufficiently larger
than typical excitation energy of electrons in the attached lead,
the transition between the states with n12 = 0 and 1 is sup-
pressed, and non-local correlation eq.(29) survives. We note
that the correlation eq.(29) is still independent of the distance
between two edges L, though the overlap between the two
Majorana end states depends on L.

A more remarkable non-local correlation effect appears in
a mesoscopic topological superconductor in which the charg-
ing energy effect is not negligible. This sophisticated idea
was first proposed and examined by Fu. We, here, present a
bit modified version of this argument. Let us consider a 1D
mesoscopic-size superconductor which is not grounded, but
a capacitor is inserted between the system and the ground.
Because of the charging energy, the lowest energy state has
a fixed total number of electrons n, which can be controlled
by changing the gate voltage between the capacitor and the
ground. An important point here is that, under this condition,
the phase of the superconducting gap fluctuates, because it
is canonical-conjugate to the charge number. To take account
of this fact, we consider commutation relation for the charge
number operator n̂ and the phase operator φ, i.e. [n̂, φ/2] = −i,
which leads to

[n̂, e±i φ2 ] = ±e±i φ2 . (30)

The operator e±i φ2 is the raising and lowering operator for the
charge number. In fact, denoting the state with the charge
number n as |n〉, we have,

e±i φ2 |n〉 = |n ± 1〉, (31)

which follows from eq.(30). Note that for conventional (non-
topological) superconductors without zero energy Majorana

6

= +1 �1or

non-local correlation survives !! 

|n12�
|1�

|0�
Esplit

�= 0

If               is larger than energy-scale of voltage applied on leads and T

(Nilsson,Akhmerov,
Beenakker)

Esplit

Correlation does not depend on |x-y| explicitly, though overlap does

J. Phys. Soc. Jpn. INVITED REVIEW PAPERS

where JM is a real constant. In addition to this, there is also
a usual Josephson coupling term for Cooper pair tunneling,
which is expressed as H2t = J cos φ with J a Josephson tun-
neling amplitude. Since the system is isolated, the total charge
number is conserved, and hence, it is an eigen state of the
fermion parity (5); i.e. iγ1γ2 = 1 or −1. As seen from (27),
these parity-eigen state exhibits 4π-periodicity of the Joseph-
son current as a function of φ. This implies that the Joseph-
son current is not carried by Cooper pairs with charge 2e,
but rather by particles with charge e; i.e. ”fractionalizaion”
of Cooper pairs.

The experimental exploration for the 4π-periodic Joseph-
son effect was achieved by ..... They used a quasi-1D nanowire
with proximity-induced-superconductivity for the realization
of topological superconductor. In this case, since there are two
additional Majorana zero-energy end states at two open edges
as well as those at the junction. Thus, the fermion-parity at
the junction is not conserved, but the mutual exchange of
the fermion parity between the junction and the open edges
occurs. In this situation, the transition between two parity-
eigen states occurs, and the periodicity of the Josephson cur-
rent is changed to 2π, which is the same as the conventional
Josephson effect. However, as clarified by San-Jose, Prada,
and Aguado, the 4π-periodicity is partially recovered in the
case of the ac Josephson effect, for which non-adiabatic tran-
sitions between states with the same fermion-parity are al-
lowed. In ref..., the measurement of the Shapiro steps, which
demonstrates the ac Josephson effect, was carried out, and the
double height of the Shapiro steps was observed. This obser-
vation may be a signature of the 4π-periodic Josephson effect.

6. Non-local correlation of Majorana fermions and tele-
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As mentioned before, we can interpret the emergence of
a Majorana fermion in a superconductor as splitting up a
complex fermionic field of an electron into real and imag-
inary parts. From this point of view, one may expect non-
local correlation between two spatially separated Majorana
fermions. This is, indeed, the case for certain situations. To
deal with this issue, we consider a simple toy model of
one-dimensional topological superconductor with a Majorana
zero-energy mode localized at the open boundaries of the sys-
tem. We denote Majorana fields for these edge states at x = 0
and L as γ1 and γ2, respectively. For this system, the mode
expansion of an electron operator with spin σ at x, ψσ(x), is
given by

ψσ(x) =
∑

i=1,2

uσi(x)γi + (non-zero energy modes). (28)

The non-local correlation can be immediately seen from
long-distance behaviors of correlation function 〈ψσ(x)ψ†σ(y)〉.
Since uσ1(2) is localized around x = 0 (L), and there are no
low-energy excitations other than the Majorana edge states,
we have, for x ∼ 0 and y ∼ L,

〈ψσ(x)ψ†σ(y)〉 ∼ uσ1(x)u∗σ2(y)〈γ1γ2〉. (29)

As mentioned in the previous sections, the topological su-
perconducting phase is the eigen state of the parity operator
iγ1γ2 = 2n−1 with n12 = ψ
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12ψ12, as long as the system is iso-

lated. Thus, the correlation function (29) is non-zero even for
|x − y| → ∞, which signifies non-local correlation raised by

the existence of Majorana zero modes. This non-local corre-
lation affects tunneling probability of electrons mediated via
Majorana zero modes in an interesting way. Let us consider
electron tunneling from one end at x = 0 to the other end at
x = L. The tunneling amplitude is proportional to the corre-
lation function (29), which is independent of the distance be-
tween two edges L. This remarkable L-independent behavior
of the tunneling is referred to as ”teleportation”. However, the
experimental detection of this ”teleportation” is a bit tricky is-
sue, because of the following reason. To distinguish whether
an electron detected at x = L comes from the opposite edge at
x = 0 via tunneling or is created from breaking up a Cooper
pair in the superconductor, we need to detect the parity state
of ψ12 simultaneously. Also, we note that this ”teleportation”
does not break causality, because the information of the one
end state, say at x = 0, must be transferred to the observer at
x = L in a classical way to detect the above-mentioned tun-
neling process. Furthermore, to probe the Majorana end state,
one needs to couple the boundary edge with a lead which al-
low electrons coming in and going out, resulting in the fail-
ure of parity conservation. Then, the systems is no longer the
eigen state of γ1γ2, and the average of this operator leads to
vanishing of correlation eq.(29). Concerning the last point,
however, the situation is changed, when there is finite overlap
of wave functions of two Majorana edge modes, and the topo-
logical degeneracy associated with the fermion number parity
iγ1γ2 = ±1 is lifted. In this case, the value of 〈γ1γ2〉 is deter-
mined by the lowest one of the two state with n12 = 0 and 1. If
the energy splitting between these levels is sufficiently larger
than typical excitation energy of electrons in the attached lead,
the transition between the states with n12 = 0 and 1 is sup-
pressed, and non-local correlation eq.(29) survives. We note
that the correlation eq.(29) is still independent of the distance
between two edges L, though the overlap between the two
Majorana end states depends on L.

A more remarkable non-local correlation effect appears in
a mesoscopic topological superconductor in which the charg-
ing energy effect is not negligible. This sophisticated idea
was first proposed and examined by Fu. We, here, present a
bit modified version of this argument. Let us consider a 1D
mesoscopic-size superconductor which is not grounded, but
a capacitor is inserted between the system and the ground.
Because of the charging energy, the lowest energy state has
a fixed total number of electrons n, which can be controlled
by changing the gate voltage between the capacitor and the
ground. An important point here is that, under this condition,
the phase of the superconducting gap fluctuates, because it
is canonical-conjugate to the charge number. To take account
of this fact, we consider commutation relation for the charge
number operator n̂ and the phase operator φ, i.e. [n̂, φ/2] = −i,
which leads to

[n̂, e±i φ2 ] = ±e±i φ2 . (30)

The operator e±i φ2 is the raising and lowering operator for the
charge number. In fact, denoting the state with the charge
number n as |n〉, we have,

e±i φ2 |n〉 = |n ± 1〉, (31)

which follows from eq.(30). Note that for conventional (non-
topological) superconductors without zero energy Majorana
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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where JM is a real constant. In addition to this, there is also
a usual Josephson coupling term for Cooper pair tunneling,
which is expressed as H2t = J cos φ with J a Josephson tun-
neling amplitude. Since the system is isolated, the total charge
number is conserved, and hence, it is an eigen state of the
fermion parity (5); i.e. iγ1γ2 = 1 or −1. As seen from (27),
these parity-eigen state exhibits 4π-periodicity of the Joseph-
son current as a function of φ. This implies that the Joseph-
son current is not carried by Cooper pairs with charge 2e,
but rather by particles with charge e; i.e. ”fractionalizaion”
of Cooper pairs.

The experimental exploration for the 4π-periodic Joseph-
son effect was achieved by ..... They used a quasi-1D nanowire
with proximity-induced-superconductivity for the realization
of topological superconductor. In this case, since there are two
additional Majorana zero-energy end states at two open edges
as well as those at the junction. Thus, the fermion-parity at
the junction is not conserved, but the mutual exchange of
the fermion parity between the junction and the open edges
occurs. In this situation, the transition between two parity-
eigen states occurs, and the periodicity of the Josephson cur-
rent is changed to 2π, which is the same as the conventional
Josephson effect. However, as clarified by San-Jose, Prada,
and Aguado, the 4π-periodicity is partially recovered in the
case of the ac Josephson effect, for which non-adiabatic tran-
sitions between states with the same fermion-parity are al-
lowed. In ref..., the measurement of the Shapiro steps, which
demonstrates the ac Josephson effect, was carried out, and the
double height of the Shapiro steps was observed. This obser-
vation may be a signature of the 4π-periodic Josephson effect.

6. Non-local correlation of Majorana fermions and tele-
portation

As mentioned before, we can interpret the emergence of
a Majorana fermion in a superconductor as splitting up a
complex fermionic field of an electron into real and imag-
inary parts. From this point of view, one may expect non-
local correlation between two spatially separated Majorana
fermions. This is, indeed, the case for certain situations. To
deal with this issue, we consider a simple toy model of
one-dimensional topological superconductor with a Majorana
zero-energy mode localized at the open boundaries of the sys-
tem. We denote Majorana fields for these edge states at x = 0
and L as γ1 and γ2, respectively. For this system, the mode
expansion of an electron operator with spin σ at x, ψσ(x), is
given by

ψσ(x) =
∑

i=1,2

uσi(x)γi + (non-zero energy modes). (28)

The non-local correlation can be immediately seen from
long-distance behaviors of correlation function 〈ψσ(x)ψ†σ(y)〉.
Since uσ1(2) is localized around x = 0 (L), and there are no
low-energy excitations other than the Majorana edge states,
we have, for x ∼ 0 and y ∼ L,

〈ψσ(x)ψ†σ(y)〉 ∼ uσ1(x)u∗σ2(y)〈γ1γ2〉. (29)

As mentioned in the previous sections, the topological su-
perconducting phase is the eigen state of the parity operator
iγ1γ2 = 2n−1 with n12 = ψ

†
12ψ12, as long as the system is iso-

lated. Thus, the correlation function (29) is non-zero even for
|x − y| → ∞, which signifies non-local correlation raised by

the existence of Majorana zero modes. This non-local corre-
lation affects tunneling probability of electrons mediated via
Majorana zero modes in an interesting way. Let us consider
electron tunneling from one end at x = 0 to the other end at
x = L. The tunneling amplitude is proportional to the corre-
lation function (29), which is independent of the distance be-
tween two edges L. This remarkable L-independent behavior
of the tunneling is referred to as ”teleportation”. However, the
experimental detection of this ”teleportation” is a bit tricky is-
sue, because of the following reason. To distinguish whether
an electron detected at x = L comes from the opposite edge at
x = 0 via tunneling or is created from breaking up a Cooper
pair in the superconductor, we need to detect the parity state
of ψ12 simultaneously. Also, we note that this ”teleportation”
does not break causality, because the information of the one
end state, say at x = 0, must be transferred to the observer at
x = L in a classical way to detect the above-mentioned tun-
neling process. Furthermore, to probe the Majorana end state,
one needs to couple the boundary edge with a lead which al-
low electrons coming in and going out, resulting in the fail-
ure of parity conservation. Then, the systems is no longer the
eigen state of γ1γ2, and the average of this operator leads to
vanishing of correlation eq.(29). Concerning the last point,
however, the situation is changed, when there is finite overlap
of wave functions of two Majorana edge modes, and the topo-
logical degeneracy associated with the fermion number parity
iγ1γ2 = ±1 is lifted. In this case, the value of 〈γ1γ2〉 is deter-
mined by the lowest one of the two state with n12 = 0 and 1. If
the energy splitting between these levels is sufficiently larger
than typical excitation energy of electrons in the attached lead,
the transition between the states with n12 = 0 and 1 is sup-
pressed, and non-local correlation eq.(29) survives. We note
that the correlation eq.(29) is still independent of the distance
between two edges L, though the overlap between the two
Majorana end states depends on L.

A more remarkable non-local correlation effect appears in
a mesoscopic topological superconductor in which the charg-
ing energy effect is not negligible. This sophisticated idea
was first proposed and examined by Fu. We, here, present a
bit modified version of this argument. Let us consider a 1D
mesoscopic-size superconductor which is not grounded, but
a capacitor is inserted between the system and the ground.
Because of the charging energy, the lowest energy state has
a fixed total number of electrons n, which can be controlled
by changing the gate voltage between the capacitor and the
ground. An important point here is that, under this condition,
the phase of the superconducting gap fluctuates, because it
is canonical-conjugate to the charge number. To take account
of this fact, we consider commutation relation for the charge
number operator n̂ and the phase operator φ, i.e. [n̂, φ/2] = −i,
which leads to

[n̂, e±i φ2 ] = ±e±i φ2 . (30)

The operator e±i φ2 is the raising and lowering operator for the
charge number. In fact, denoting the state with the charge
number n as |n〉, we have,

e±i φ2 |n〉 = |n ± 1〉, (31)

which follows from eq.(30). Note that for conventional (non-
topological) superconductors without zero energy Majorana
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modes, the total charge changes only by 2 at sufficiently low
temperatures, since single-particle excitations cost extra ener-
gies, and we consider e±iφ for particle-number changing oper-
ators instead of eq.(31). In contrast, in the case with Majorana
zero-energy modes at two edges x = 0 and L, of which the
Majorana fields are denoted as γ1 and γ2, respectively, the
states with n12 = 0 and 1 are the doubly-degenerate ground
states, and eq.(31) plays an important role.. For the suffi-
ciently large charging energy which constraints the total elec-
tron number n, the low energy states are restricted within only
two states with the total number of electrons n0 and n0+1 cor-
responding to the double degeneracy n12 = 0 and 1. We trun-
cate the Hilbert space, leaving only these two states. Then, n
takes only two values n0 and n0+1, and the commutation rela-
tion holds for φ and n12: [n12, e±i φ2 ] = ±e±i φ2 . In the truncated
Hilbert space, eq.(31) reads,

ei φ2 |0〉 = |1〉, e−i φ2 |1〉 = |0〉, ei φ2 |1〉 = 0, e−i φ2 |0〉 = 0. (32)

We also note that ei φ2 does not commute with the Majorana
operators γ1 and γ2. To see this, we consider the operation,

γ1ei φ2 |0〉 = γ1|1〉 = γ2
1 |0〉 = |0〉. (33)

Here we used eq.(32) and |1〉 = γ1|0〉 which follows from
ψ†12|0〉 = |1〉 and ψ12|0〉 = 0. Also, since

ei φ2 γ1|0〉 = ei φ2 |1〉 = 0, (34)

we obtain, [γ1, ei φ2 ]|0〉 = |0〉. In a similar way, we have
[γ1, ei φ2 ]|1〉 = −|1〉. Thus, for this truncated Hilbert space, γ1

and ei φ2 obey the commutation relation,

[γ1, ei φ2 ] = (−1)n12 . (35)

Also, the hermit conjugate of this is

[γ1, e−i φ2 ] = (−1)n12+1. (36)

Applying the same argument to γ2, we find

[γ2, e±i φ2 ] = −i(−1)n12 . (37)

The commutation relations (35), (36), and (37) are impor-
tant for the following argument on tunneling between a meso-
scopic superconductor and a normal metal lead mediated via
Majorana zero modes. Note that when the charging energy
is negligible, and the total electron-number are not restricted,
eq.(34) is changed to exp(iφ/2)γ1|0〉 = |2〉. Also, the ground
state is the superposition of different electron-number states
with the same fermion-parity, |G.S.〉 = ∑

n exp(inφ)|n〉. As a
result, one obtain [γ1, exp(±iφ/2)] = 0, which implies that we
can neglect the non-commutativity of Majorana fields and the
phase operator.

To take into account the phase fluctuation explicitly, we,
now, include the phase operator φ in the mode expansion of
an electron field (28),

ψσ(x) =
∑

i=1,2

uσi(x)γiei φ2 + (non-zero energy modes), (38)

Then, the tunneling Hamiltonian between normal metal leads
and the superconductor which couple at x = 0 and L is

HT =
∑

k,σ

∑

i=1,2

[Vkσic†kσγie−iφ/2 + h.c.], (39)

where c†kσ is a creation operator for an electron with momen-
tum k and spin σ in the normal metal leads, and Vkσi is the
tunneling amplitude between the leads and the superconduc-
tor. We, here, introduce operators defined by

f =
1√
2
γ1e−i φ2 , f † =

1√
2

ei φ2 γ1. (40)

This operator satisfies, f f † + f † f = 1, which is the fermionic
anti-commutation relation. However, we must examine care-
fully whether f and f † square to zero to establish that f
is a fermion operator. In fact, from eq.(36) it follows f 2 =
(e−iφ + (−1)n12γ1e−iφ/2)/2, and using (32), we find

f 2|0〉 = 0, ( f †)2|0〉 = 0. (41)

On the other hand, however, in a smiler manner, we obtain
f 2|1〉 = − 1

2 |1〉 and ( f †)2|1〉 = − 1
2 |1〉. Thus, f ( f †) is an an-

nihilation (a creation) operator for a fermion only when the
Hilbert space is restricted to |0〉. This situation occurs when
there is finite overlap between two Majorana zero modes γ1
and γ2 which generates an energy gap between |0〉 and |1〉, and
the state |0〉 is the lowest energy state. In the case that |1〉 is
the lowest energy state, we can use an alternative definition of
f given by f = exp(−iφ/2)γ1/

√
2. Then, it follows f 2|1〉 = 0,

( f †)2|1〉 = 0, while f 2|0〉 = − 1
2 |0〉, ( f †)2|0〉 = − 1

2 |0〉. Thus,
as long as only one of the two parity eigen states is realized
because of a finite energy gap, f and f † can be regarded as
fermion annihilation and creation operators.

Furthermore, the fermion operator f is also related to γ2
through the parity eigen value n12. For the definition (40), we
obtain the following relation,

1√
2
γ2e−i φ2 = i(−1)n12 f ,

1√
2

ei φ2 γ2 = −i(−1)n12 f †. (42)

Then, using (40) and (42), we can rewrite the tunnel Hamil-
tonian (39) into the form,

HT =
∑

k,σ

√
2[Vkσ1c†kσ f + i(−1)n12 Vkσ2c†kσ f

+V∗kσ1 f †ckσ − i(−1)n12 V∗kσ2 f †ckσ]. (43)

This implies that electrons in the normal metal leads coupled
with Majorana modes at x = 0 via Vkσ1 and at x = L via Vkσ2
tunnel through the superconductor. This tunneling is mediated
by the f fermion, which is akin to resonant tunneling. But an
important difference is that the f fermion, which is indepen-
dent of spatial coordinates and time is not a point particle,
but an spatially extended object spreading over the supercon-
ducting region. This feature is a result of non-local correla-
tion of Majorana fermions at x = 0 and L. Since the tunneling
amplitude does not depend on L explicitly, we can call this
electron transfer process as ”teleportation”. We stress that this
”teleportation” does not break causality because of the above-
mentioned reason. This effect can be experimentally detected
as the AB effect. Let us consider the setup shown in Fig...
, which consists of a topological superconducting wire with
Majorana zero modes at boundary edges attached with a nor-
mal metal lead, constituting a ring geometry threaded by a
magnetic flux. Because of the single-electron resonant tun-
neling mediated via Majorana modes (43), at sufficiently low
temperatures for which quantum coherence of electrons in the
normal metal lead is retained, the AB effect with the periodic-
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modes, the total charge changes only by 2 at sufficiently low
temperatures, since single-particle excitations cost extra ener-
gies, and we consider e±iφ for particle-number changing oper-
ators instead of eq.(31). In contrast, in the case with Majorana
zero-energy modes at two edges x = 0 and L, of which the
Majorana fields are denoted as γ1 and γ2, respectively, the
states with n12 = 0 and 1 are the doubly-degenerate ground
states, and eq.(31) plays an important role.. For the suffi-
ciently large charging energy which constraints the total elec-
tron number n, the low energy states are restricted within only
two states with the total number of electrons n0 and n0+1 cor-
responding to the double degeneracy n12 = 0 and 1. We trun-
cate the Hilbert space, leaving only these two states. Then, n
takes only two values n0 and n0+1, and the commutation rela-
tion holds for φ and n12: [n12, e±i φ2 ] = ±e±i φ2 . In the truncated
Hilbert space, eq.(31) reads,

ei φ2 |0〉 = |1〉, e−i φ2 |1〉 = |0〉, ei φ2 |1〉 = 0, e−i φ2 |0〉 = 0. (32)

We also note that ei φ2 does not commute with the Majorana
operators γ1 and γ2. To see this, we consider the operation,

γ1ei φ2 |0〉 = γ1|1〉 = γ2
1 |0〉 = |0〉. (33)

Here we used eq.(32) and |1〉 = γ1|0〉 which follows from
ψ†12|0〉 = |1〉 and ψ12|0〉 = 0. Also, since

ei φ2 γ1|0〉 = ei φ2 |1〉 = 0, (34)

we obtain, [γ1, ei φ2 ]|0〉 = |0〉. In a similar way, we have
[γ1, ei φ2 ]|1〉 = −|1〉. Thus, for this truncated Hilbert space, γ1

and ei φ2 obey the commutation relation,

[γ1, ei φ2 ] = (−1)n12 . (35)

Also, the hermit conjugate of this is

[γ1, e−i φ2 ] = (−1)n12+1. (36)

Applying the same argument to γ2, we find

[γ2, e±i φ2 ] = −i(−1)n12 . (37)

The commutation relations (35), (36), and (37) are impor-
tant for the following argument on tunneling between a meso-
scopic superconductor and a normal metal lead mediated via
Majorana zero modes. Note that when the charging energy
is negligible, and the total electron-number are not restricted,
eq.(34) is changed to exp(iφ/2)γ1|0〉 = |2〉. Also, the ground
state is the superposition of different electron-number states
with the same fermion-parity, |G.S.〉 = ∑

n exp(inφ)|n〉. As a
result, one obtain [γ1, exp(±iφ/2)] = 0, which implies that we
can neglect the non-commutativity of Majorana fields and the
phase operator.

To take into account the phase fluctuation explicitly, we,
now, include the phase operator φ in the mode expansion of
an electron field (28),

ψσ(x) =
∑

i=1,2

uσi(x)γiei φ2 + (non-zero energy modes), (38)

Then, the tunneling Hamiltonian between normal metal leads
and the superconductor which couple at x = 0 and L is

HT =
∑

k,σ

∑

i=1,2

[Vkσic†kσγie−iφ/2 + h.c.], (39)

where c†kσ is a creation operator for an electron with momen-
tum k and spin σ in the normal metal leads, and Vkσi is the
tunneling amplitude between the leads and the superconduc-
tor. We, here, introduce operators defined by

f =
1√
2
γ1e−i φ2 , f † =

1√
2

ei φ2 γ1. (40)

This operator satisfies, f f † + f † f = 1, which is the fermionic
anti-commutation relation. However, we must examine care-
fully whether f and f † square to zero to establish that f
is a fermion operator. In fact, from eq.(36) it follows f 2 =
(e−iφ + (−1)n12γ1e−iφ/2)/2, and using (32), we find

f 2|0〉 = 0, ( f †)2|0〉 = 0. (41)

On the other hand, however, in a smiler manner, we obtain
f 2|1〉 = − 1

2 |1〉 and ( f †)2|1〉 = − 1
2 |1〉. Thus, f ( f †) is an an-

nihilation (a creation) operator for a fermion only when the
Hilbert space is restricted to |0〉. This situation occurs when
there is finite overlap between two Majorana zero modes γ1
and γ2 which generates an energy gap between |0〉 and |1〉, and
the state |0〉 is the lowest energy state. In the case that |1〉 is
the lowest energy state, we can use an alternative definition of
f given by f = exp(−iφ/2)γ1/

√
2. Then, it follows f 2|1〉 = 0,

( f †)2|1〉 = 0, while f 2|0〉 = − 1
2 |0〉, ( f †)2|0〉 = − 1

2 |0〉. Thus,
as long as only one of the two parity eigen states is realized
because of a finite energy gap, f and f † can be regarded as
fermion annihilation and creation operators.

Furthermore, the fermion operator f is also related to γ2
through the parity eigen value n12. For the definition (40), we
obtain the following relation,

1√
2
γ2e−i φ2 = i(−1)n12 f ,

1√
2

ei φ2 γ2 = −i(−1)n12 f †. (42)

Then, using (40) and (42), we can rewrite the tunnel Hamil-
tonian (39) into the form,

HT =
∑

k,σ

√
2[Vkσ1c†kσ f + i(−1)n12 Vkσ2c†kσ f

+V∗kσ1 f †ckσ − i(−1)n12 V∗kσ2 f †ckσ]. (43)

This implies that electrons in the normal metal leads coupled
with Majorana modes at x = 0 via Vkσ1 and at x = L via Vkσ2
tunnel through the superconductor. This tunneling is mediated
by the f fermion, which is akin to resonant tunneling. But an
important difference is that the f fermion, which is indepen-
dent of spatial coordinates and time is not a point particle,
but an spatially extended object spreading over the supercon-
ducting region. This feature is a result of non-local correla-
tion of Majorana fermions at x = 0 and L. Since the tunneling
amplitude does not depend on L explicitly, we can call this
electron transfer process as ”teleportation”. We stress that this
”teleportation” does not break causality because of the above-
mentioned reason. This effect can be experimentally detected
as the AB effect. Let us consider the setup shown in Fig...
, which consists of a topological superconducting wire with
Majorana zero modes at boundary edges attached with a nor-
mal metal lead, constituting a ring geometry threaded by a
magnetic flux. Because of the single-electron resonant tun-
neling mediated via Majorana modes (43), at sufficiently low
temperatures for which quantum coherence of electrons in the
normal metal lead is retained, the AB effect with the periodic-

7

J. Phys. Soc. Jpn. INVITED REVIEW PAPERS

modes, the total charge changes only by 2 at sufficiently low
temperatures, since single-particle excitations cost extra ener-
gies, and we consider e±iφ for particle-number changing oper-
ators instead of eq.(31). In contrast, in the case with Majorana
zero-energy modes at two edges x = 0 and L, of which the
Majorana fields are denoted as γ1 and γ2, respectively, the
states with n12 = 0 and 1 are the doubly-degenerate ground
states, and eq.(31) plays an important role.. For the suffi-
ciently large charging energy which constraints the total elec-
tron number n, the low energy states are restricted within only
two states with the total number of electrons n0 and n0+1 cor-
responding to the double degeneracy n12 = 0 and 1. We trun-
cate the Hilbert space, leaving only these two states. Then, n
takes only two values n0 and n0+1, and the commutation rela-
tion holds for φ and n12: [n12, e±i φ2 ] = ±e±i φ2 . In the truncated
Hilbert space, eq.(31) reads,

ei φ2 |0〉 = |1〉, e−i φ2 |1〉 = |0〉, ei φ2 |1〉 = 0, e−i φ2 |0〉 = 0. (32)

We also note that ei φ2 does not commute with the Majorana
operators γ1 and γ2. To see this, we consider the operation,

γ1ei φ2 |0〉 = γ1|1〉 = γ2
1 |0〉 = |0〉. (33)

Here we used eq.(32) and |1〉 = γ1|0〉 which follows from
ψ†12|0〉 = |1〉 and ψ12|0〉 = 0. Also, since

ei φ2 γ1|0〉 = ei φ2 |1〉 = 0, (34)

we obtain, [γ1, ei φ2 ]|0〉 = |0〉. In a similar way, we have
[γ1, ei φ2 ]|1〉 = −|1〉. Thus, for this truncated Hilbert space, γ1

and ei φ2 obey the commutation relation,

[γ1, ei φ2 ] = (−1)n12 . (35)

Also, the hermit conjugate of this is

[γ1, e−i φ2 ] = (−1)n12+1. (36)

Applying the same argument to γ2, we find

[γ2, e±i φ2 ] = −i(−1)n12 . (37)

The commutation relations (35), (36), and (37) are impor-
tant for the following argument on tunneling between a meso-
scopic superconductor and a normal metal lead mediated via
Majorana zero modes. Note that when the charging energy
is negligible, and the total electron-number are not restricted,
eq.(34) is changed to exp(iφ/2)γ1|0〉 = |2〉. Also, the ground
state is the superposition of different electron-number states
with the same fermion-parity, |G.S.〉 = ∑

n exp(inφ)|n〉. As a
result, one obtain [γ1, exp(±iφ/2)] = 0, which implies that we
can neglect the non-commutativity of Majorana fields and the
phase operator.

To take into account the phase fluctuation explicitly, we,
now, include the phase operator φ in the mode expansion of
an electron field (28),

ψσ(x) =
∑

i=1,2

uσi(x)γiei φ2 + (non-zero energy modes), (38)

Then, the tunneling Hamiltonian between normal metal leads
and the superconductor which couple at x = 0 and L is

HT =
∑

k,σ

∑

i=1,2

[Vkσic†kσγie−iφ/2 + h.c.], (39)

where c†kσ is a creation operator for an electron with momen-
tum k and spin σ in the normal metal leads, and Vkσi is the
tunneling amplitude between the leads and the superconduc-
tor. We, here, introduce operators defined by

f =
1√
2
γ1e−i φ2 , f † =

1√
2

ei φ2 γ1. (40)

This operator satisfies, f f † + f † f = 1, which is the fermionic
anti-commutation relation. However, we must examine care-
fully whether f and f † square to zero to establish that f
is a fermion operator. In fact, from eq.(36) it follows f 2 =
(e−iφ + (−1)n12γ1e−iφ/2)/2, and using (32), we find

f 2|0〉 = 0, ( f †)2|0〉 = 0. (41)

On the other hand, however, in a smiler manner, we obtain
f 2|1〉 = − 1

2 |1〉 and ( f †)2|1〉 = − 1
2 |1〉. Thus, f ( f †) is an an-

nihilation (a creation) operator for a fermion only when the
Hilbert space is restricted to |0〉. This situation occurs when
there is finite overlap between two Majorana zero modes γ1
and γ2 which generates an energy gap between |0〉 and |1〉, and
the state |0〉 is the lowest energy state. In the case that |1〉 is
the lowest energy state, we can use an alternative definition of
f given by f = exp(−iφ/2)γ1/

√
2. Then, it follows f 2|1〉 = 0,

( f †)2|1〉 = 0, while f 2|0〉 = − 1
2 |0〉, ( f †)2|0〉 = − 1

2 |0〉. Thus,
as long as only one of the two parity eigen states is realized
because of a finite energy gap, f and f † can be regarded as
fermion annihilation and creation operators.

Furthermore, the fermion operator f is also related to γ2
through the parity eigen value n12. For the definition (40), we
obtain the following relation,

1√
2
γ2e−i φ2 = i(−1)n12 f ,

1√
2

ei φ2 γ2 = −i(−1)n12 f †. (42)

Then, using (40) and (42), we can rewrite the tunnel Hamil-
tonian (39) into the form,

HT =
∑

k,σ

√
2[Vkσ1c†kσ f + i(−1)n12 Vkσ2c†kσ f

+V∗kσ1 f †ckσ − i(−1)n12 V∗kσ2 f †ckσ]. (43)

This implies that electrons in the normal metal leads coupled
with Majorana modes at x = 0 via Vkσ1 and at x = L via Vkσ2
tunnel through the superconductor. This tunneling is mediated
by the f fermion, which is akin to resonant tunneling. But an
important difference is that the f fermion, which is indepen-
dent of spatial coordinates and time is not a point particle,
but an spatially extended object spreading over the supercon-
ducting region. This feature is a result of non-local correla-
tion of Majorana fermions at x = 0 and L. Since the tunneling
amplitude does not depend on L explicitly, we can call this
electron transfer process as ”teleportation”. We stress that this
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magnetic flux. Because of the single-electron resonant tun-
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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where JM is a real constant. In addition to this, there is also
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6. Non-local correlation of Majorana fermions and tele-
portation

As mentioned before, we can interpret the emergence of
a Majorana fermion in a superconductor as splitting up a
complex fermionic field of an electron into real and imag-
inary parts. From this point of view, one may expect non-
local correlation between two spatially separated Majorana
fermions. This is, indeed, the case for certain situations. To
deal with this issue, we consider a simple toy model of
one-dimensional topological superconductor with a Majorana
zero-energy mode localized at the open boundaries of the sys-
tem. We denote Majorana fields for these edge states at x = 0
and L as γ1 and γ2, respectively. For this system, the mode
expansion of an electron operator with spin σ at x, ψσ(x), is
given by

ψσ(x) =
∑

i=1,2

uσi(x)γi + (non-zero energy modes). (28)

The non-local correlation can be immediately seen from
long-distance behaviors of correlation function 〈ψσ(x)ψ†σ(y)〉.
Since uσ1(2) is localized around x = 0 (L), and there are no
low-energy excitations other than the Majorana edge states,
we have, for x ∼ 0 and y ∼ L,

〈ψσ(x)ψ†σ(y)〉 ∼ uσ1(x)u∗σ2(y)〈γ1γ2〉. (29)

As mentioned in the previous sections, the topological su-
perconducting phase is the eigen state of the parity operator
iγ1γ2 = 2n−1 with n12 = ψ

†
12ψ12, as long as the system is iso-

lated. Thus, the correlation function (29) is non-zero even for
|x − y| → ∞, which signifies non-local correlation raised by

the existence of Majorana zero modes. This non-local corre-
lation affects tunneling probability of electrons mediated via
Majorana zero modes in an interesting way. Let us consider
electron tunneling from one end at x = 0 to the other end at
x = L. The tunneling amplitude is proportional to the corre-
lation function (29), which is independent of the distance be-
tween two edges L. This remarkable L-independent behavior
of the tunneling is referred to as ”teleportation”. However, the
experimental detection of this ”teleportation” is a bit tricky is-
sue, because of the following reason. To distinguish whether
an electron detected at x = L comes from the opposite edge at
x = 0 via tunneling or is created from breaking up a Cooper
pair in the superconductor, we need to detect the parity state
of ψ12 simultaneously. Also, we note that this ”teleportation”
does not break causality, because the information of the one
end state, say at x = 0, must be transferred to the observer at
x = L in a classical way to detect the above-mentioned tun-
neling process. Furthermore, to probe the Majorana end state,
one needs to couple the boundary edge with a lead which al-
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ure of parity conservation. Then, the systems is no longer the
eigen state of γ1γ2, and the average of this operator leads to
vanishing of correlation eq.(29). Concerning the last point,
however, the situation is changed, when there is finite overlap
of wave functions of two Majorana edge modes, and the topo-
logical degeneracy associated with the fermion number parity
iγ1γ2 = ±1 is lifted. In this case, the value of 〈γ1γ2〉 is deter-
mined by the lowest one of the two state with n12 = 0 and 1. If
the energy splitting between these levels is sufficiently larger
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the transition between the states with n12 = 0 and 1 is sup-
pressed, and non-local correlation eq.(29) survives. We note
that the correlation eq.(29) is still independent of the distance
between two edges L, though the overlap between the two
Majorana end states depends on L.

A more remarkable non-local correlation effect appears in
a mesoscopic topological superconductor in which the charg-
ing energy effect is not negligible. This sophisticated idea
was first proposed and examined by Fu. We, here, present a
bit modified version of this argument. Let us consider a 1D
mesoscopic-size superconductor which is not grounded, but
a capacitor is inserted between the system and the ground.
Because of the charging energy, the lowest energy state has
a fixed total number of electrons n, which can be controlled
by changing the gate voltage between the capacitor and the
ground. An important point here is that, under this condition,
the phase of the superconducting gap fluctuates, because it
is canonical-conjugate to the charge number. To take account
of this fact, we consider commutation relation for the charge
number operator n̂ and the phase operator φ, i.e. [n̂, φ/2] = −i,
which leads to

[n̂, e±i φ2 ] = ±e±i φ2 . (30)

The operator e±i φ2 is the raising and lowering operator for the
charge number. In fact, denoting the state with the charge
number n as |n〉, we have,

e±i φ2 |n〉 = |n ± 1〉, (31)

which follows from eq.(30). Note that for conventional (non-
topological) superconductors without zero energy Majorana
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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modes, the total charge changes only by 2 at sufficiently low
temperatures, since single-particle excitations cost extra ener-
gies, and we consider e±iφ for particle-number changing oper-
ators instead of eq.(31). In contrast, in the case with Majorana
zero-energy modes at two edges x = 0 and L, of which the
Majorana fields are denoted as γ1 and γ2, respectively, the
states with n12 = 0 and 1 are the doubly-degenerate ground
states, and eq.(31) plays an important role.. For the suffi-
ciently large charging energy which constraints the total elec-
tron number n, the low energy states are restricted within only
two states with the total number of electrons n0 and n0+1 cor-
responding to the double degeneracy n12 = 0 and 1. We trun-
cate the Hilbert space, leaving only these two states. Then, n
takes only two values n0 and n0+1, and the commutation rela-
tion holds for φ and n12: [n12, e±i φ2 ] = ±e±i φ2 . In the truncated
Hilbert space, eq.(31) reads,

ei φ2 |0〉 = |1〉, e−i φ2 |1〉 = |0〉, ei φ2 |1〉 = 0, e−i φ2 |0〉 = 0. (32)

We also note that ei φ2 does not commute with the Majorana
operators γ1 and γ2. To see this, we consider the operation,

γ1ei φ2 |0〉 = γ1|1〉 = γ2
1 |0〉 = |0〉. (33)

Here we used eq.(32) and |1〉 = γ1|0〉 which follows from
ψ†12|0〉 = |1〉 and ψ12|0〉 = 0. Also, since

ei φ2 γ1|0〉 = ei φ2 |1〉 = 0, (34)

we obtain, [γ1, ei φ2 ]|0〉 = |0〉. In a similar way, we have
[γ1, ei φ2 ]|1〉 = −|1〉. Thus, for this truncated Hilbert space, γ1

and ei φ2 obey the commutation relation,

[γ1, ei φ2 ] = (−1)n12 . (35)

Also, the hermit conjugate of this is

[γ1, e−i φ2 ] = (−1)n12+1. (36)

Applying the same argument to γ2, we find

[γ2, e±i φ2 ] = −i(−1)n12 . (37)

The commutation relations (35), (36), and (37) are impor-
tant for the following argument on tunneling between a meso-
scopic superconductor and a normal metal lead mediated via
Majorana zero modes. Note that when the charging energy
is negligible, and the total electron-number are not restricted,
eq.(34) is changed to exp(iφ/2)γ1|0〉 = |2〉. Also, the ground
state is the superposition of different electron-number states
with the same fermion-parity, |G.S.〉 = ∑

n exp(inφ)|n〉. As a
result, one obtain [γ1, exp(±iφ/2)] = 0, which implies that we
can neglect the non-commutativity of Majorana fields and the
phase operator.

To take into account the phase fluctuation explicitly, we,
now, include the phase operator φ in the mode expansion of
an electron field (28),

ψσ(x) =
∑

i=1,2

uσi(x)γiei φ2 + (non-zero energy modes), (38)

Then, the tunneling Hamiltonian between normal metal leads
and the superconductor which couple at x = 0 and L is

HT =
∑

k,σ

∑

i=1,2

[Vkσic†kσγie−iφ/2 + h.c.], (39)

where c†kσ is a creation operator for an electron with momen-
tum k and spin σ in the normal metal leads, and Vkσi is the
tunneling amplitude between the leads and the superconduc-
tor. We, here, introduce operators defined by

f =
1√
2
γ1e−i φ2 , f † =

1√
2

ei φ2 γ1. (40)

This operator satisfies, f f † + f † f = 1, which is the fermionic
anti-commutation relation. However, we must examine care-
fully whether f and f † square to zero to establish that f
is a fermion operator. In fact, from eq.(36) it follows f 2 =
(e−iφ + (−1)n12γ1e−iφ/2)/2, and using (32), we find

f 2|0〉 = 0, ( f †)2|0〉 = 0. (41)

On the other hand, however, in a smiler manner, we obtain
f 2|1〉 = − 1

2 |1〉 and ( f †)2|1〉 = − 1
2 |1〉. Thus, f ( f †) is an an-

nihilation (a creation) operator for a fermion only when the
Hilbert space is restricted to |0〉. This situation occurs when
there is finite overlap between two Majorana zero modes γ1
and γ2 which generates an energy gap between |0〉 and |1〉, and
the state |0〉 is the lowest energy state. In the case that |1〉 is
the lowest energy state, we can use an alternative definition of
f given by f = exp(−iφ/2)γ1/

√
2. Then, it follows f 2|1〉 = 0,

( f †)2|1〉 = 0, while f 2|0〉 = − 1
2 |0〉, ( f †)2|0〉 = − 1

2 |0〉. Thus,
as long as only one of the two parity eigen states is realized
because of a finite energy gap, f and f † can be regarded as
fermion annihilation and creation operators.

Furthermore, the fermion operator f is also related to γ2
through the parity eigen value n12. For the definition (40), we
obtain the following relation,

1√
2
γ2e−i φ2 = i(−1)n12 f ,

1√
2

ei φ2 γ2 = −i(−1)n12 f †. (42)

Then, using (40) and (42), we can rewrite the tunnel Hamil-
tonian (39) into the form,

HT =
∑

k,σ

√
2[Vkσ1c†kσ f + i(−1)n12 Vkσ2c†kσ f

+V∗kσ1 f †ckσ − i(−1)n12 V∗kσ2 f †ckσ]. (43)

This implies that electrons in the normal metal leads coupled
with Majorana modes at x = 0 via Vkσ1 and at x = L via Vkσ2
tunnel through the superconductor. This tunneling is mediated
by the f fermion, which is akin to resonant tunneling. But an
important difference is that the f fermion, which is indepen-
dent of spatial coordinates and time is not a point particle,
but an spatially extended object spreading over the supercon-
ducting region. This feature is a result of non-local correla-
tion of Majorana fermions at x = 0 and L. Since the tunneling
amplitude does not depend on L explicitly, we can call this
electron transfer process as ”teleportation”. We stress that this
”teleportation” does not break causality because of the above-
mentioned reason. This effect can be experimentally detected
as the AB effect. Let us consider the setup shown in Fig...
, which consists of a topological superconducting wire with
Majorana zero modes at boundary edges attached with a nor-
mal metal lead, constituting a ring geometry threaded by a
magnetic flux. Because of the single-electron resonant tun-
neling mediated via Majorana modes (43), at sufficiently low
temperatures for which quantum coherence of electrons in the
normal metal lead is retained, the AB effect with the periodic-
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modes, the total charge changes only by 2 at sufficiently low
temperatures, since single-particle excitations cost extra ener-
gies, and we consider e±iφ for particle-number changing oper-
ators instead of eq.(31). In contrast, in the case with Majorana
zero-energy modes at two edges x = 0 and L, of which the
Majorana fields are denoted as γ1 and γ2, respectively, the
states with n12 = 0 and 1 are the doubly-degenerate ground
states, and eq.(31) plays an important role.. For the suffi-
ciently large charging energy which constraints the total elec-
tron number n, the low energy states are restricted within only
two states with the total number of electrons n0 and n0+1 cor-
responding to the double degeneracy n12 = 0 and 1. We trun-
cate the Hilbert space, leaving only these two states. Then, n
takes only two values n0 and n0+1, and the commutation rela-
tion holds for φ and n12: [n12, e±i φ2 ] = ±e±i φ2 . In the truncated
Hilbert space, eq.(31) reads,

ei φ2 |0〉 = |1〉, e−i φ2 |1〉 = |0〉, ei φ2 |1〉 = 0, e−i φ2 |0〉 = 0. (32)

We also note that ei φ2 does not commute with the Majorana
operators γ1 and γ2. To see this, we consider the operation,

γ1ei φ2 |0〉 = γ1|1〉 = γ2
1 |0〉 = |0〉. (33)

Here we used eq.(32) and |1〉 = γ1|0〉 which follows from
ψ†12|0〉 = |1〉 and ψ12|0〉 = 0. Also, since

ei φ2 γ1|0〉 = ei φ2 |1〉 = 0, (34)

we obtain, [γ1, ei φ2 ]|0〉 = |0〉. In a similar way, we have
[γ1, ei φ2 ]|1〉 = −|1〉. Thus, for this truncated Hilbert space, γ1

and ei φ2 obey the commutation relation,

[γ1, ei φ2 ] = (−1)n12 . (35)

Also, the hermit conjugate of this is

[γ1, e−i φ2 ] = (−1)n12+1. (36)

Applying the same argument to γ2, we find

[γ2, e±i φ2 ] = −i(−1)n12 . (37)

The commutation relations (35), (36), and (37) are impor-
tant for the following argument on tunneling between a meso-
scopic superconductor and a normal metal lead mediated via
Majorana zero modes. Note that when the charging energy
is negligible, and the total electron-number are not restricted,
eq.(34) is changed to exp(iφ/2)γ1|0〉 = |2〉. Also, the ground
state is the superposition of different electron-number states
with the same fermion-parity, |G.S.〉 = ∑

n exp(inφ)|n〉. As a
result, one obtain [γ1, exp(±iφ/2)] = 0, which implies that we
can neglect the non-commutativity of Majorana fields and the
phase operator.

To take into account the phase fluctuation explicitly, we,
now, include the phase operator φ in the mode expansion of
an electron field (28),

ψσ(x) =
∑

i=1,2

uσi(x)γiei φ2 + (non-zero energy modes), (38)

Then, the tunneling Hamiltonian between normal metal leads
and the superconductor which couple at x = 0 and L is

HT =
∑

k,σ

∑

i=1,2

[Vkσic†kσγie−iφ/2 + h.c.], (39)

where c†kσ is a creation operator for an electron with momen-
tum k and spin σ in the normal metal leads, and Vkσi is the
tunneling amplitude between the leads and the superconduc-
tor. We, here, introduce operators defined by

f =
1√
2
γ1e−i φ2 , f † =

1√
2

ei φ2 γ1. (40)

This operator satisfies, f f † + f † f = 1, which is the fermionic
anti-commutation relation. However, we must examine care-
fully whether f and f † square to zero to establish that f
is a fermion operator. In fact, from eq.(36) it follows f 2 =
(e−iφ + (−1)n12γ1e−iφ/2)/2, and using (32), we find

f 2|0〉 = 0, ( f †)2|0〉 = 0. (41)

On the other hand, however, in a smiler manner, we obtain
f 2|1〉 = − 1

2 |1〉 and ( f †)2|1〉 = − 1
2 |1〉. Thus, f ( f †) is an an-

nihilation (a creation) operator for a fermion only when the
Hilbert space is restricted to |0〉. This situation occurs when
there is finite overlap between two Majorana zero modes γ1
and γ2 which generates an energy gap between |0〉 and |1〉, and
the state |0〉 is the lowest energy state. In the case that |1〉 is
the lowest energy state, we can use an alternative definition of
f given by f = exp(−iφ/2)γ1/

√
2. Then, it follows f 2|1〉 = 0,

( f †)2|1〉 = 0, while f 2|0〉 = − 1
2 |0〉, ( f †)2|0〉 = − 1

2 |0〉. Thus,
as long as only one of the two parity eigen states is realized
because of a finite energy gap, f and f † can be regarded as
fermion annihilation and creation operators.

Furthermore, the fermion operator f is also related to γ2
through the parity eigen value n12. For the definition (40), we
obtain the following relation,

1√
2
γ2e−i φ2 = −i(−1)n12 f ,

1√
2

ei φ2 γ2 = i f †(−1)n12 . (42)

Then, using (40) and (42), we can rewrite the tunnel Hamil-
tonian (39) into the form,

HT =
∑

k,σ

√
2[Vkσ1c†kσ f − i(−1)n12 Vkσ2c†kσ f

+V∗kσ1 f †ckσ + iV∗kσ2 f †ckσ(−1)n12 ]. (43)

This implies that electrons in the normal metal leads coupled
with Majorana modes at x = 0 via Vkσ1 and at x = L via Vkσ2
tunnel through the superconductor. This tunneling is mediated
by the f fermion, which is akin to resonant tunneling. But an
important difference is that the f fermion, which is indepen-
dent of spatial coordinates and time is not a point particle,
but an spatially extended object spreading over the supercon-
ducting region. This feature is a result of non-local correla-
tion of Majorana fermions at x = 0 and L. Since the tunneling
amplitude does not depend on L explicitly, we can call this
electron transfer process as ”teleportation”. We stress that this
”teleportation” does not break causality because of the above-
mentioned reason. This effect can be experimentally detected
as the AB effect. Let us consider the setup shown in Fig...
, which consists of a topological superconducting wire with
Majorana zero modes at boundary edges attached with a nor-
mal metal lead, constituting a ring geometry threaded by a
magnetic flux. Because of the single-electron resonant tun-
neling mediated via Majorana modes (43), at sufficiently low
temperatures for which quantum coherence of electrons in the
normal metal lead is retained, the AB effect with the periodic-
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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modes, the total charge changes only by 2 at sufficiently low
temperatures, since single-particle excitations cost extra ener-
gies, and we consider e±iφ for particle-number changing oper-
ators instead of eq.(31). In contrast, in the case with Majorana
zero-energy modes at two edges x = 0 and L, of which the
Majorana fields are denoted as γ1 and γ2, respectively, the
states with n12 = 0 and 1 are the doubly-degenerate ground
states, and eq.(31) plays an important role.. For the suffi-
ciently large charging energy which constraints the total elec-
tron number n, the low energy states are restricted within only
two states with the total number of electrons n0 and n0+1 cor-
responding to the double degeneracy n12 = 0 and 1. We trun-
cate the Hilbert space, leaving only these two states. Then, n
takes only two values n0 and n0+1, and the commutation rela-
tion holds for φ and n12: [n12, e±i φ2 ] = ±e±i φ2 . In the truncated
Hilbert space, eq.(31) reads,

ei φ2 |0〉 = |1〉, e−i φ2 |1〉 = |0〉, ei φ2 |1〉 = 0, e−i φ2 |0〉 = 0. (32)

We also note that ei φ2 does not commute with the Majorana
operators γ1 and γ2. To see this, we consider the operation,

γ1ei φ2 |0〉 = γ1|1〉 = γ2
1 |0〉 = |0〉. (33)

Here we used eq.(32) and |1〉 = γ1|0〉 which follows from
ψ†12|0〉 = |1〉 and ψ12|0〉 = 0. Also, since

ei φ2 γ1|0〉 = ei φ2 |1〉 = 0, (34)

we obtain, [γ1, ei φ2 ]|0〉 = |0〉. In a similar way, we have
[γ1, ei φ2 ]|1〉 = −|1〉. Thus, for this truncated Hilbert space, γ1

and ei φ2 obey the commutation relation,

[γ1, ei φ2 ] = (−1)n12 . (35)

Also, the hermit conjugate of this is

[γ1, e−i φ2 ] = (−1)n12+1. (36)

Applying the same argument to γ2, we find

[γ2, e±i φ2 ] = −i(−1)n12 . (37)

The commutation relations (35), (36), and (37) are impor-
tant for the following argument on tunneling between a meso-
scopic superconductor and a normal metal lead mediated via
Majorana zero modes. Note that when the charging energy
is negligible, and the total electron-number are not restricted,
eq.(34) is changed to exp(iφ/2)γ1|0〉 = |2〉. Also, the ground
state is the superposition of different electron-number states
with the same fermion-parity, |G.S.〉 = ∑

n exp(inφ)|n〉. As a
result, one obtain [γ1, exp(±iφ/2)] = 0, which implies that we
can neglect the non-commutativity of Majorana fields and the
phase operator.

To take into account the phase fluctuation explicitly, we,
now, include the phase operator φ in the mode expansion of
an electron field (28),

ψσ(x) =
∑

i=1,2

uσi(x)γiei φ2 + (non-zero energy modes), (38)

Then, the tunneling Hamiltonian between normal metal leads
and the superconductor which couple at x = 0 and L is

HT =
∑

k,σ

∑

i=1,2

[Vkσic†kσγie−iφ/2 + h.c.], (39)

where c†kσ is a creation operator for an electron with momen-
tum k and spin σ in the normal metal leads, and Vkσi is the
tunneling amplitude between the leads and the superconduc-
tor. We, here, introduce operators defined by

f =
1√
2
γ1e−i φ2 , f † =

1√
2

ei φ2 γ1. (40)

This operator satisfies, f f † + f † f = 1, which is the fermionic
anti-commutation relation. However, we must examine care-
fully whether f and f † square to zero to establish that f
is a fermion operator. In fact, from eq.(36) it follows f 2 =
(e−iφ + (−1)n12γ1e−iφ/2)/2, and using (32), we find

f 2|0〉 = 0, ( f †)2|0〉 = 0. (41)

On the other hand, however, in a smiler manner, we obtain
f 2|1〉 = − 1

2 |1〉 and ( f †)2|1〉 = − 1
2 |1〉. Thus, f ( f †) is an an-

nihilation (a creation) operator for a fermion only when the
Hilbert space is restricted to |0〉. This situation occurs when
there is finite overlap between two Majorana zero modes γ1
and γ2 which generates an energy gap between |0〉 and |1〉, and
the state |0〉 is the lowest energy state. In the case that |1〉 is
the lowest energy state, we can use an alternative definition of
f given by f = exp(−iφ/2)γ1/

√
2. Then, it follows f 2|1〉 = 0,

( f †)2|1〉 = 0, while f 2|0〉 = − 1
2 |0〉, ( f †)2|0〉 = − 1

2 |0〉. Thus,
as long as only one of the two parity eigen states is realized
because of a finite energy gap, f and f † can be regarded as
fermion annihilation and creation operators.

Furthermore, the fermion operator f is also related to γ2
through the parity eigen value n12. For the definition (40), we
obtain the following relation,

1√
2
γ2e−i φ2 = −i(−1)n12 f ,

1√
2

ei φ2 γ2 = i f †(−1)n12 . (42)

Then, using (40) and (42), we can rewrite the tunnel Hamil-
tonian (39) into the form,

HT =
∑

k,σ

√
2[Vkσ1c†kσ f − i(−1)n12 Vkσ2c†kσ f

+V∗kσ1 f †ckσ + iV∗kσ2 f †ckσ(−1)n12 ]. (43)

This implies that electrons in the normal metal leads coupled
with Majorana modes at x = 0 via Vkσ1 and at x = L via Vkσ2
tunnel through the superconductor. This tunneling is mediated
by the f fermion, which is akin to resonant tunneling. But an
important difference is that the f fermion, which is indepen-
dent of spatial coordinates and time is not a point particle,
but an spatially extended object spreading over the supercon-
ducting region. This feature is a result of non-local correla-
tion of Majorana fermions at x = 0 and L. Since the tunneling
amplitude does not depend on L explicitly, we can call this
electron transfer process as ”teleportation”. We stress that this
”teleportation” does not break causality because of the above-
mentioned reason. This effect can be experimentally detected
as the AB effect. Let us consider the setup shown in Fig...
, which consists of a topological superconducting wire with
Majorana zero modes at boundary edges attached with a nor-
mal metal lead, constituting a ring geometry threaded by a
magnetic flux. Because of the single-electron resonant tun-
neling mediated via Majorana modes (43), at sufficiently low
temperatures for which quantum coherence of electrons in the
normal metal lead is retained, the AB effect with the periodic-
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modes, the total charge changes only by 2 at sufficiently low
temperatures, since single-particle excitations cost extra ener-
gies, and we consider e±iφ for particle-number changing oper-
ators instead of eq.(31). In contrast, in the case with Majorana
zero-energy modes at two edges x = 0 and L, of which the
Majorana fields are denoted as γ1 and γ2, respectively, the
states with n12 = 0 and 1 are the doubly-degenerate ground
states, and eq.(31) plays an important role.. For the suffi-
ciently large charging energy which constraints the total elec-
tron number n, the low energy states are restricted within only
two states with the total number of electrons n0 and n0+1 cor-
responding to the double degeneracy n12 = 0 and 1. We trun-
cate the Hilbert space, leaving only these two states. Then, n
takes only two values n0 and n0+1, and the commutation rela-
tion holds for φ and n12: [n12, e±i φ2 ] = ±e±i φ2 . In the truncated
Hilbert space, eq.(31) reads,

ei φ2 |0〉 = |1〉, e−i φ2 |1〉 = |0〉, ei φ2 |1〉 = 0, e−i φ2 |0〉 = 0. (32)

We also note that ei φ2 does not commute with the Majorana
operators γ1 and γ2. To see this, we consider the operation,

γ1ei φ2 |0〉 = γ1|1〉 = γ2
1 |0〉 = |0〉. (33)

Here we used eq.(32) and |1〉 = γ1|0〉 which follows from
ψ†12|0〉 = |1〉 and ψ12|0〉 = 0. Also, since

ei φ2 γ1|0〉 = ei φ2 |1〉 = 0, (34)

we obtain, [γ1, ei φ2 ]|0〉 = |0〉. In a similar way, we have
[γ1, ei φ2 ]|1〉 = −|1〉. Thus, for this truncated Hilbert space, γ1

and ei φ2 obey the commutation relation,

[γ1, ei φ2 ] = (−1)n12 . (35)

Also, the hermit conjugate of this is

[γ1, e−i φ2 ] = (−1)n12+1. (36)

Applying the same argument to γ2, we find

[γ2, e±i φ2 ] = −i(−1)n12 . (37)

The commutation relations (35), (36), and (37) are impor-
tant for the following argument on tunneling between a meso-
scopic superconductor and a normal metal lead mediated via
Majorana zero modes. Note that when the charging energy
is negligible, and the total electron-number are not restricted,
eq.(34) is changed to exp(iφ/2)γ1|0〉 = |2〉. Also, the ground
state is the superposition of different electron-number states
with the same fermion-parity, |G.S.〉 = ∑

n exp(inφ)|n〉. As a
result, one obtain [γ1, exp(±iφ/2)] = 0, which implies that we
can neglect the non-commutativity of Majorana fields and the
phase operator.

To take into account the phase fluctuation explicitly, we,
now, include the phase operator φ in the mode expansion of
an electron field (28),

ψσ(x) =
∑

i=1,2

uσi(x)γiei φ2 + (non-zero energy modes), (38)

Then, the tunneling Hamiltonian between normal metal leads
and the superconductor which couple at x = 0 and L is

HT =
∑

k,σ

∑

i=1,2

[Vkσic†kσγie−iφ/2 + h.c.], (39)

where c†kσ is a creation operator for an electron with momen-
tum k and spin σ in the normal metal leads, and Vkσi is the
tunneling amplitude between the leads and the superconduc-
tor. We, here, introduce operators defined by

f =
1√
2
γ1e−i φ2 , f † =

1√
2

ei φ2 γ1. (40)

This operator satisfies, f f † + f † f = 1, which is the fermionic
anti-commutation relation. However, we must examine care-
fully whether f and f † square to zero to establish that f
is a fermion operator. In fact, from eq.(36) it follows f 2 =
(e−iφ + (−1)n12γ1e−iφ/2)/2, and using (32), we find

f 2|0〉 = 0, ( f †)2|0〉 = 0. (41)

On the other hand, however, in a smiler manner, we obtain
f 2|1〉 = − 1

2 |1〉 and ( f †)2|1〉 = − 1
2 |1〉. Thus, f ( f †) is an an-

nihilation (a creation) operator for a fermion only when the
Hilbert space is restricted to |0〉. This situation occurs when
there is finite overlap between two Majorana zero modes γ1
and γ2 which generates an energy gap between |0〉 and |1〉, and
the state |0〉 is the lowest energy state. In the case that |1〉 is
the lowest energy state, we can use an alternative definition of
f given by f = exp(−iφ/2)γ1/

√
2. Then, it follows f 2|1〉 = 0,

( f †)2|1〉 = 0, while f 2|0〉 = − 1
2 |0〉, ( f †)2|0〉 = − 1

2 |0〉. Thus,
as long as only one of the two parity eigen states is realized
because of a finite energy gap, f and f † can be regarded as
fermion annihilation and creation operators.

Furthermore, the fermion operator f is also related to γ2
through the parity eigen value n12. For the definition (40), we
obtain the following relation,

1√
2
γ2e−i φ2 = i(−1)n12 f ,

1√
2

ei φ2 γ2 = −i(−1)n12 f †. (42)

Then, using (40) and (42), we can rewrite the tunnel Hamil-
tonian (39) into the form,

HT =
∑

k,σ

√
2[Vkσ1c†kσ f + i(−1)n12 Vkσ2c†kσ f

+V∗kσ1 f †ckσ − i(−1)n12 V∗kσ2 f †ckσ]. (43)

This implies that electrons in the normal metal leads coupled
with Majorana modes at x = 0 via Vkσ1 and at x = L via Vkσ2
tunnel through the superconductor. This tunneling is mediated
by the f fermion, which is akin to resonant tunneling. But an
important difference is that the f fermion, which is indepen-
dent of spatial coordinates and time is not a point particle,
but an spatially extended object spreading over the supercon-
ducting region. This feature is a result of non-local correla-
tion of Majorana fermions at x = 0 and L. Since the tunneling
amplitude does not depend on L explicitly, we can call this
electron transfer process as ”teleportation”. We stress that this
”teleportation” does not break causality because of the above-
mentioned reason. This effect can be experimentally detected
as the AB effect. Let us consider the setup shown in Fig...
, which consists of a topological superconducting wire with
Majorana zero modes at boundary edges attached with a nor-
mal metal lead, constituting a ring geometry threaded by a
magnetic flux. Because of the single-electron resonant tun-
neling mediated via Majorana modes (43), at sufficiently low
temperatures for which quantum coherence of electrons in the
normal metal lead is retained, the AB effect with the periodic-
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modes, the total charge changes only by 2 at sufficiently low
temperatures, since single-particle excitations cost extra ener-
gies, and we consider e±iφ for particle-number changing oper-
ators instead of eq.(31). In contrast, in the case with Majorana
zero-energy modes at two edges x = 0 and L, of which the
Majorana fields are denoted as γ1 and γ2, respectively, the
states with n12 = 0 and 1 are the doubly-degenerate ground
states, and eq.(31) plays an important role.. For the suffi-
ciently large charging energy which constraints the total elec-
tron number n, the low energy states are restricted within only
two states with the total number of electrons n0 and n0+1 cor-
responding to the double degeneracy n12 = 0 and 1. We trun-
cate the Hilbert space, leaving only these two states. Then, n
takes only two values n0 and n0+1, and the commutation rela-
tion holds for φ and n12: [n12, e±i φ2 ] = ±e±i φ2 . In the truncated
Hilbert space, eq.(31) reads,

ei φ2 |0〉 = |1〉, e−i φ2 |1〉 = |0〉, ei φ2 |1〉 = 0, e−i φ2 |0〉 = 0. (32)

We also note that ei φ2 does not commute with the Majorana
operators γ1 and γ2. To see this, we consider the operation,

γ1ei φ2 |0〉 = γ1|1〉 = γ2
1 |0〉 = |0〉. (33)

Here we used eq.(32) and |1〉 = γ1|0〉 which follows from
ψ†12|0〉 = |1〉 and ψ12|0〉 = 0. Also, since

ei φ2 γ1|0〉 = ei φ2 |1〉 = 0, (34)

we obtain, [γ1, ei φ2 ]|0〉 = |0〉. In a similar way, we have
[γ1, ei φ2 ]|1〉 = −|1〉. Thus, for this truncated Hilbert space, γ1

and ei φ2 obey the commutation relation,

[γ1, ei φ2 ] = (−1)n12 . (35)

Also, the hermit conjugate of this is

[γ1, e−i φ2 ] = (−1)n12+1. (36)

Applying the same argument to γ2, we find

[γ2, e±i φ2 ] = −i(−1)n12 . (37)

The commutation relations (35), (36), and (37) are impor-
tant for the following argument on tunneling between a meso-
scopic superconductor and a normal metal lead mediated via
Majorana zero modes. Note that when the charging energy
is negligible, and the total electron-number are not restricted,
eq.(34) is changed to exp(iφ/2)γ1|0〉 = |2〉. Also, the ground
state is the superposition of different electron-number states
with the same fermion-parity, |G.S.〉 = ∑

n exp(inφ)|n〉. As a
result, one obtain [γ1, exp(±iφ/2)] = 0, which implies that we
can neglect the non-commutativity of Majorana fields and the
phase operator.

To take into account the phase fluctuation explicitly, we,
now, include the phase operator φ in the mode expansion of
an electron field (28),

ψσ(x) =
∑

i=1,2

uσi(x)γiei φ2 + (non-zero energy modes), (38)

Then, the tunneling Hamiltonian between normal metal leads
and the superconductor which couple at x = 0 and L is

HT =
∑

k,σ

∑

i=1,2

[Vkσic†kσγie−iφ/2 + h.c.], (39)

where c†kσ is a creation operator for an electron with momen-
tum k and spin σ in the normal metal leads, and Vkσi is the
tunneling amplitude between the leads and the superconduc-
tor. We, here, introduce operators defined by

f =
1√
2
γ1e−i φ2 , f † =

1√
2

ei φ2 γ1. (40)

This operator satisfies, f f † + f † f = 1, which is the fermionic
anti-commutation relation. However, we must examine care-
fully whether f and f † square to zero to establish that f
is a fermion operator. In fact, from eq.(36) it follows f 2 =
(e−iφ + (−1)n12γ1e−iφ/2)/2, and using (32), we find

f 2|0〉 = 0, ( f †)2|0〉 = 0. (41)

On the other hand, however, in a smiler manner, we obtain
f 2|1〉 = − 1

2 |1〉 and ( f †)2|1〉 = − 1
2 |1〉. Thus, f ( f †) is an an-

nihilation (a creation) operator for a fermion only when the
Hilbert space is restricted to |0〉. This situation occurs when
there is finite overlap between two Majorana zero modes γ1
and γ2 which generates an energy gap between |0〉 and |1〉, and
the state |0〉 is the lowest energy state. In the case that |1〉 is
the lowest energy state, we can use an alternative definition of
f given by f = exp(−iφ/2)γ1/

√
2. Then, it follows f 2|1〉 = 0,

( f †)2|1〉 = 0, while f 2|0〉 = − 1
2 |0〉, ( f †)2|0〉 = − 1

2 |0〉. Thus,
as long as only one of the two parity eigen states is realized
because of a finite energy gap, f and f † can be regarded as
fermion annihilation and creation operators.

Furthermore, the fermion operator f is also related to γ2
through the parity eigen value n12. For the definition (40), we
obtain the following relation,

1√
2
γ2e−i φ2 = −i(−1)n12 f ,

1√
2

ei φ2 γ2 = i f †(−1)n12 . (42)

Then, using (40) and (42), we can rewrite the tunnel Hamil-
tonian (39) into the form,

HT =
∑

k,σ

√
2[Vkσ1c†kσ f − i(−1)n12 Vkσ2c†kσ f

+V∗kσ1 f †ckσ + iV∗kσ2 f †ckσ(−1)n12 ]. (43)

This implies that electrons in the normal metal leads coupled
with Majorana modes at x = 0 via Vkσ1 and at x = L via Vkσ2
tunnel through the superconductor. This tunneling is mediated
by the f fermion, which is akin to resonant tunneling. But an
important difference is that the f fermion, which is indepen-
dent of spatial coordinates and time is not a point particle,
but an spatially extended object spreading over the supercon-
ducting region. This feature is a result of non-local correla-
tion of Majorana fermions at x = 0 and L. Since the tunneling
amplitude does not depend on L explicitly, we can call this
electron transfer process as ”teleportation”. We stress that this
”teleportation” does not break causality because of the above-
mentioned reason. This effect can be experimentally detected
as the AB effect. Let us consider the setup shown in Fig...
, which consists of a topological superconducting wire with
Majorana zero modes at boundary edges attached with a nor-
mal metal lead, constituting a ring geometry threaded by a
magnetic flux. Because of the single-electron resonant tun-
neling mediated via Majorana modes (43), at sufficiently low
temperatures for which quantum coherence of electrons in the
normal metal lead is retained, the AB effect with the periodic-
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modes, the total charge changes only by 2 at sufficiently low
temperatures, since single-particle excitations cost extra ener-
gies, and we consider e±iφ for particle-number changing oper-
ators instead of eq.(31). In contrast, in the case with Majorana
zero-energy modes at two edges x = 0 and L, of which the
Majorana fields are denoted as γ1 and γ2, respectively, the
states with n12 = 0 and 1 are the doubly-degenerate ground
states, and eq.(31) plays an important role.. For the suffi-
ciently large charging energy which constraints the total elec-
tron number n, the low energy states are restricted within only
two states with the total number of electrons n0 and n0+1 cor-
responding to the double degeneracy n12 = 0 and 1. We trun-
cate the Hilbert space, leaving only these two states. Then, n
takes only two values n0 and n0+1, and the commutation rela-
tion holds for φ and n12: [n12, e±i φ2 ] = ±e±i φ2 . In the truncated
Hilbert space, eq.(31) reads,

ei φ2 |0〉 = |1〉, e−i φ2 |1〉 = |0〉, ei φ2 |1〉 = 0, e−i φ2 |0〉 = 0. (32)

We also note that ei φ2 does not commute with the Majorana
operators γ1 and γ2. To see this, we consider the operation,

γ1ei φ2 |0〉 = γ1|1〉 = γ2
1 |0〉 = |0〉. (33)

Here we used eq.(32) and |1〉 = γ1|0〉 which follows from
ψ†12|0〉 = |1〉 and ψ12|0〉 = 0. Also, since

ei φ2 γ1|0〉 = ei φ2 |1〉 = 0, (34)

we obtain, [γ1, ei φ2 ]|0〉 = |0〉. In a similar way, we have
[γ1, ei φ2 ]|1〉 = −|1〉. Thus, for this truncated Hilbert space, γ1

and ei φ2 obey the commutation relation,

[γ1, ei φ2 ] = (−1)n12 . (35)

Also, the hermit conjugate of this is

[γ1, e−i φ2 ] = (−1)n12+1. (36)

Applying the same argument to γ2, we find

[γ2, e±i φ2 ] = −i(−1)n12 . (37)

The commutation relations (35), (36), and (37) are impor-
tant for the following argument on tunneling between a meso-
scopic superconductor and a normal metal lead mediated via
Majorana zero modes. Note that when the charging energy
is negligible, and the total electron-number are not restricted,
eq.(34) is changed to exp(iφ/2)γ1|0〉 = |2〉. Also, the ground
state is the superposition of different electron-number states
with the same fermion-parity, |G.S.〉 = ∑

n exp(inφ)|n〉. As a
result, one obtain [γ1, exp(±iφ/2)] = 0, which implies that we
can neglect the non-commutativity of Majorana fields and the
phase operator.

To take into account the phase fluctuation explicitly, we,
now, include the phase operator φ in the mode expansion of
an electron field (28),

ψσ(x) =
∑

i=1,2

uσi(x)γiei φ2 + (non-zero energy modes), (38)

Then, the tunneling Hamiltonian between normal metal leads
and the superconductor which couple at x = 0 and L is

HT =
∑

k,σ

∑

i=1,2

[Vkσic†kσγie−iφ/2 + h.c.], (39)

where c†kσ is a creation operator for an electron with momen-
tum k and spin σ in the normal metal leads, and Vkσi is the
tunneling amplitude between the leads and the superconduc-
tor. We, here, introduce operators defined by

f =
1√
2
γ1e−i φ2 , f † =

1√
2

ei φ2 γ1. (40)

This operator satisfies, f f † + f † f = 1, which is the fermionic
anti-commutation relation. However, we must examine care-
fully whether f and f † square to zero to establish that f
is a fermion operator. In fact, from eq.(36) it follows f 2 =
(e−iφ + (−1)n12γ1e−iφ/2)/2, and using (32), we find

f 2|0〉 = 0, ( f †)2|0〉 = 0. (41)

On the other hand, however, in a smiler manner, we obtain
f 2|1〉 = − 1

2 |1〉 and ( f †)2|1〉 = − 1
2 |1〉. Thus, f ( f †) is an an-

nihilation (a creation) operator for a fermion only when the
Hilbert space is restricted to |0〉. This situation occurs when
there is finite overlap between two Majorana zero modes γ1
and γ2 which generates an energy gap between |0〉 and |1〉, and
the state |0〉 is the lowest energy state. In the case that |1〉 is
the lowest energy state, we can use an alternative definition of
f given by f = exp(−iφ/2)γ1/

√
2. Then, it follows f 2|1〉 = 0,

( f †)2|1〉 = 0, while f 2|0〉 = − 1
2 |0〉, ( f †)2|0〉 = − 1

2 |0〉. Thus,
as long as only one of the two parity eigen states is realized
because of a finite energy gap, f and f † can be regarded as
fermion annihilation and creation operators.

Furthermore, the fermion operator f is also related to γ2
through the parity eigen value n12. For the definition (40), we
obtain the following relation,

1√
2
γ2e−i φ2 = i(−1)n12 f ,

1√
2

ei φ2 γ2 = −i(−1)n12 f †. (42)

Then, using (40) and (42), we can rewrite the tunnel Hamil-
tonian (39) into the form,

HT =
∑

k,σ

√
2[Vkσ1c†kσ f + i(−1)n12 Vkσ2c†kσ f

+V∗kσ1 f †ckσ − i(−1)n12 V∗kσ2 f †ckσ]. (43)

This implies that electrons in the normal metal leads coupled
with Majorana modes at x = 0 via Vkσ1 and at x = L via Vkσ2
tunnel through the superconductor. This tunneling is mediated
by the f fermion, which is akin to resonant tunneling. But an
important difference is that the f fermion, which is indepen-
dent of spatial coordinates and time is not a point particle,
but an spatially extended object spreading over the supercon-
ducting region. This feature is a result of non-local correla-
tion of Majorana fermions at x = 0 and L. Since the tunneling
amplitude does not depend on L explicitly, we can call this
electron transfer process as ”teleportation”. We stress that this
”teleportation” does not break causality because of the above-
mentioned reason. This effect can be experimentally detected
as the AB effect. Let us consider the setup shown in Fig...
, which consists of a topological superconducting wire with
Majorana zero modes at boundary edges attached with a nor-
mal metal lead, constituting a ring geometry threaded by a
magnetic flux. Because of the single-electron resonant tun-
neling mediated via Majorana modes (43), at sufficiently low
temperatures for which quantum coherence of electrons in the
normal metal lead is retained, the AB effect with the periodic-
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modes, the total charge changes only by 2 at sufficiently low
temperatures, since single-particle excitations cost extra ener-
gies, and we consider e±iφ for particle-number changing oper-
ators instead of eq.(31). In contrast, in the case with Majorana
zero-energy modes at two edges x = 0 and L, of which the
Majorana fields are denoted as γ1 and γ2, respectively, the
states with n12 = 0 and 1 are the doubly-degenerate ground
states, and eq.(31) plays an important role.. For the suffi-
ciently large charging energy which constraints the total elec-
tron number n, the low energy states are restricted within only
two states with the total number of electrons n0 and n0+1 cor-
responding to the double degeneracy n12 = 0 and 1. We trun-
cate the Hilbert space, leaving only these two states. Then, n
takes only two values n0 and n0+1, and the commutation rela-
tion holds for φ and n12: [n12, e±i φ2 ] = ±e±i φ2 . In the truncated
Hilbert space, eq.(31) reads,

ei φ2 |0〉 = |1〉, e−i φ2 |1〉 = |0〉, ei φ2 |1〉 = 0, e−i φ2 |0〉 = 0. (32)

We also note that ei φ2 does not commute with the Majorana
operators γ1 and γ2. To see this, we consider the operation,

γ1ei φ2 |0〉 = γ1|1〉 = γ2
1 |0〉 = |0〉. (33)

Here we used eq.(32) and |1〉 = γ1|0〉 which follows from
ψ†12|0〉 = |1〉 and ψ12|0〉 = 0. Also, since

ei φ2 γ1|0〉 = ei φ2 |1〉 = 0, (34)

we obtain, [γ1, ei φ2 ]|0〉 = |0〉. In a similar way, we have
[γ1, ei φ2 ]|1〉 = −|1〉. Thus, for this truncated Hilbert space, γ1

and ei φ2 obey the commutation relation,

[γ1, ei φ2 ] = (−1)n12 . (35)

Also, the hermit conjugate of this is

[γ1, e−i φ2 ] = (−1)n12+1. (36)

Applying the same argument to γ2, we find

[γ2, e±i φ2 ] = −i(−1)n12 . (37)

The commutation relations (35), (36), and (37) are impor-
tant for the following argument on tunneling between a meso-
scopic superconductor and a normal metal lead mediated via
Majorana zero modes. Note that when the charging energy
is negligible, and the total electron-number are not restricted,
eq.(34) is changed to exp(iφ/2)γ1|0〉 = |2〉. Also, the ground
state is the superposition of different electron-number states
with the same fermion-parity, |G.S.〉 = ∑

n exp(inφ)|n〉. As a
result, one obtain [γ1, exp(±iφ/2)] = 0, which implies that we
can neglect the non-commutativity of Majorana fields and the
phase operator.

To take into account the phase fluctuation explicitly, we,
now, include the phase operator φ in the mode expansion of
an electron field (28),

ψσ(x) =
∑

i=1,2

uσi(x)γiei φ2 + (non-zero energy modes), (38)

Then, the tunneling Hamiltonian between normal metal leads
and the superconductor which couple at x = 0 and L is

HT =
∑

k,σ

∑

i=1,2

[Vkσic†kσγie−iφ/2 + h.c.], (39)

where c†kσ is a creation operator for an electron with momen-
tum k and spin σ in the normal metal leads, and Vkσi is the
tunneling amplitude between the leads and the superconduc-
tor. We, here, introduce operators defined by

f =
1√
2
γ1e−i φ2 , f † =

1√
2

ei φ2 γ1. (40)

This operator satisfies, f f † + f † f = 1, which is the fermionic
anti-commutation relation. However, we must examine care-
fully whether f and f † square to zero to establish that f
is a fermion operator. In fact, from eq.(36) it follows f 2 =
(e−iφ + (−1)n12γ1e−iφ/2)/2, and using (32), we find

f 2|0〉 = 0, ( f †)2|0〉 = 0. (41)

On the other hand, however, in a smiler manner, we obtain
f 2|1〉 = − 1

2 |1〉 and ( f †)2|1〉 = − 1
2 |1〉. Thus, f ( f †) is an an-

nihilation (a creation) operator for a fermion only when the
Hilbert space is restricted to |0〉. This situation occurs when
there is finite overlap between two Majorana zero modes γ1
and γ2 which generates an energy gap between |0〉 and |1〉, and
the state |0〉 is the lowest energy state. In the case that |1〉 is
the lowest energy state, we can use an alternative definition of
f given by f = exp(−iφ/2)γ1/

√
2. Then, it follows f 2|1〉 = 0,

( f †)2|1〉 = 0, while f 2|0〉 = − 1
2 |0〉, ( f †)2|0〉 = − 1

2 |0〉. Thus,
as long as only one of the two parity eigen states is realized
because of a finite energy gap, f and f † can be regarded as
fermion annihilation and creation operators.

Furthermore, the fermion operator f is also related to γ2
through the parity eigen value n12. For the definition (40), we
obtain the following relation,

1√
2
γ2e−i φ2 = i(−1)n12 f ,

1√
2

ei φ2 γ2 = −i(−1)n12 f †. (42)

Then, using (40) and (42), we can rewrite the tunnel Hamil-
tonian (39) into the form,

HT =
∑

k,σ

√
2[Vkσ1c†kσ f + i(−1)n12 Vkσ2c†kσ f

+V∗kσ1 f †ckσ − i(−1)n12 V∗kσ2 f †ckσ]. (43)

This implies that electrons in the normal metal leads coupled
with Majorana modes at x = 0 via Vkσ1 and at x = L via Vkσ2
tunnel through the superconductor. This tunneling is mediated
by the f fermion, which is akin to resonant tunneling. But an
important difference is that the f fermion, which is indepen-
dent of spatial coordinates and time is not a point particle,
but an spatially extended object spreading over the supercon-
ducting region. This feature is a result of non-local correla-
tion of Majorana fermions at x = 0 and L. Since the tunneling
amplitude does not depend on L explicitly, we can call this
electron transfer process as ”teleportation”. We stress that this
”teleportation” does not break causality because of the above-
mentioned reason. This effect can be experimentally detected
as the AB effect. Let us consider the setup shown in Fig...
, which consists of a topological superconducting wire with
Majorana zero modes at boundary edges attached with a nor-
mal metal lead, constituting a ring geometry threaded by a
magnetic flux. Because of the single-electron resonant tun-
neling mediated via Majorana modes (43), at sufficiently low
temperatures for which quantum coherence of electrons in the
normal metal lead is retained, the AB effect with the periodic-
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modes, the total charge changes only by 2 at sufficiently low
temperatures, since single-particle excitations cost extra ener-
gies, and we consider e±iφ for particle-number changing oper-
ators instead of eq.(31). In contrast, in the case with Majorana
zero-energy modes at two edges x = 0 and L, of which the
Majorana fields are denoted as γ1 and γ2, respectively, the
states with n12 = 0 and 1 are the doubly-degenerate ground
states, and eq.(31) plays an important role.. For the suffi-
ciently large charging energy which constraints the total elec-
tron number n, the low energy states are restricted within only
two states with the total number of electrons n0 and n0+1 cor-
responding to the double degeneracy n12 = 0 and 1. We trun-
cate the Hilbert space, leaving only these two states. Then, n
takes only two values n0 and n0+1, and the commutation rela-
tion holds for φ and n12: [n12, e±i φ2 ] = ±e±i φ2 . In the truncated
Hilbert space, eq.(31) reads,

ei φ2 |0〉 = |1〉, e−i φ2 |1〉 = |0〉, ei φ2 |1〉 = 0, e−i φ2 |0〉 = 0. (32)

We also note that ei φ2 does not commute with the Majorana
operators γ1 and γ2. To see this, we consider the operation,

γ1ei φ2 |0〉 = γ1|1〉 = γ2
1 |0〉 = |0〉. (33)

Here we used eq.(32) and |1〉 = γ1|0〉 which follows from
ψ†12|0〉 = |1〉 and ψ12|0〉 = 0. Also, since

ei φ2 γ1|0〉 = ei φ2 |1〉 = 0, (34)

we obtain, [γ1, ei φ2 ]|0〉 = |0〉. In a similar way, we have
[γ1, ei φ2 ]|1〉 = −|1〉. Thus, for this truncated Hilbert space, γ1

and ei φ2 obey the commutation relation,

[γ1, ei φ2 ] = (−1)n12 . (35)

Also, the hermit conjugate of this is

[γ1, e−i φ2 ] = (−1)n12+1. (36)

Applying the same argument to γ2, we find

[γ2, e±i φ2 ] = −i(−1)n12 . (37)

The commutation relations (35), (36), and (37) are impor-
tant for the following argument on tunneling between a meso-
scopic superconductor and a normal metal lead mediated via
Majorana zero modes. Note that when the charging energy
is negligible, and the total electron-number are not restricted,
eq.(34) is changed to exp(iφ/2)γ1|0〉 = |2〉. Also, the ground
state is the superposition of different electron-number states
with the same fermion-parity, |G.S.〉 = ∑

n exp(inφ)|n〉. As a
result, one obtain [γ1, exp(±iφ/2)] = 0, which implies that we
can neglect the non-commutativity of Majorana fields and the
phase operator.

To take into account the phase fluctuation explicitly, we,
now, include the phase operator φ in the mode expansion of
an electron field (28),

ψσ(x) =
∑

i=1,2

uσi(x)γiei φ2 + (non-zero energy modes), (38)

Then, the tunneling Hamiltonian between normal metal leads
and the superconductor which couple at x = 0 and L is

HT =
∑

k,σ

∑

i=1,2

[Vkσic†kσγie−iφ/2 + h.c.], (39)

where c†kσ is a creation operator for an electron with momen-
tum k and spin σ in the normal metal leads, and Vkσi is the
tunneling amplitude between the leads and the superconduc-
tor. We, here, introduce operators defined by

f =
1√
2
γ1e−i φ2 , f † =

1√
2

ei φ2 γ1. (40)

This operator satisfies, f f † + f † f = 1, which is the fermionic
anti-commutation relation. However, we must examine care-
fully whether f and f † square to zero to establish that f
is a fermion operator. In fact, from eq.(36) it follows f 2 =
(e−iφ + (−1)n12γ1e−iφ/2)/2, and using (32), we find

f 2|0〉 = 0, ( f †)2|0〉 = 0. (41)

On the other hand, however, in a smiler manner, we obtain
f 2|1〉 = − 1

2 |1〉 and ( f †)2|1〉 = − 1
2 |1〉. Thus, f ( f †) is an an-

nihilation (a creation) operator for a fermion only when the
Hilbert space is restricted to |0〉. This situation occurs when
there is finite overlap between two Majorana zero modes γ1
and γ2 which generates an energy gap between |0〉 and |1〉, and
the state |0〉 is the lowest energy state. In the case that |1〉 is
the lowest energy state, we can use an alternative definition of
f given by f = exp(−iφ/2)γ1/

√
2. Then, it follows f 2|1〉 = 0,

( f †)2|1〉 = 0, while f 2|0〉 = − 1
2 |0〉, ( f †)2|0〉 = − 1

2 |0〉. Thus,
as long as only one of the two parity eigen states is realized
because of a finite energy gap, f and f † can be regarded as
fermion annihilation and creation operators.

Furthermore, the fermion operator f is also related to γ2
through the parity eigen value n12. For the definition (40), we
obtain the following relation,

1√
2
γ2e−i φ2 = −i(−1)n12 f ,

1√
2

ei φ2 γ2 = i f †(−1)n12 . (42)

Then, using (40) and (42), we can rewrite the tunnel Hamil-
tonian (39) into the form,

HT =
∑

k,σ

√
2[Vkσ1c†kσ f − i(−1)n12 Vkσ2c†kσ f

+V∗kσ1 f †ckσ + iV∗kσ2 f †ckσ(−1)n12 ]. (43)

This implies that electrons in the normal metal leads coupled
with Majorana modes at x = 0 via Vkσ1 and at x = L via Vkσ2
tunnel through the superconductor. This tunneling is mediated
by the f fermion, which is akin to resonant tunneling. But an
important difference is that the f fermion, which is indepen-
dent of spatial coordinates and time is not a point particle,
but an spatially extended object spreading over the supercon-
ducting region. This feature is a result of non-local correla-
tion of Majorana fermions at x = 0 and L. Since the tunneling
amplitude does not depend on L explicitly, we can call this
electron transfer process as ”teleportation”. We stress that this
”teleportation” does not break causality because of the above-
mentioned reason. This effect can be experimentally detected
as the AB effect. Let us consider the setup shown in Fig...
, which consists of a topological superconducting wire with
Majorana zero modes at boundary edges attached with a nor-
mal metal lead, constituting a ring geometry threaded by a
magnetic flux. Because of the single-electron resonant tun-
neling mediated via Majorana modes (43), at sufficiently low
temperatures for which quantum coherence of electrons in the
normal metal lead is retained, the AB effect with the periodic-
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modes, the total charge changes only by 2 at sufficiently low
temperatures, since single-particle excitations cost extra ener-
gies, and we consider e±iφ for particle-number changing oper-
ators instead of eq.(31). In contrast, in the case with Majorana
zero-energy modes at two edges x = 0 and L, of which the
Majorana fields are denoted as γ1 and γ2, respectively, the
states with n12 = 0 and 1 are the doubly-degenerate ground
states, and eq.(31) plays an important role.. For the suffi-
ciently large charging energy which constraints the total elec-
tron number n, the low energy states are restricted within only
two states with the total number of electrons n0 and n0+1 cor-
responding to the double degeneracy n12 = 0 and 1. We trun-
cate the Hilbert space, leaving only these two states. Then, n
takes only two values n0 and n0+1, and the commutation rela-
tion holds for φ and n12: [n12, e±i φ2 ] = ±e±i φ2 . In the truncated
Hilbert space, eq.(31) reads,

ei φ2 |0〉 = |1〉, e−i φ2 |1〉 = |0〉, ei φ2 |1〉 = 0, e−i φ2 |0〉 = 0. (32)

We also note that ei φ2 does not commute with the Majorana
operators γ1 and γ2. To see this, we consider the operation,

γ1ei φ2 |0〉 = γ1|1〉 = γ2
1 |0〉 = |0〉. (33)

Here we used eq.(32) and |1〉 = γ1|0〉 which follows from
ψ†12|0〉 = |1〉 and ψ12|0〉 = 0. Also, since

ei φ2 γ1|0〉 = ei φ2 |1〉 = 0, (34)

we obtain, [γ1, ei φ2 ]|0〉 = |0〉. In a similar way, we have
[γ1, ei φ2 ]|1〉 = −|1〉. Thus, for this truncated Hilbert space, γ1

and ei φ2 obey the commutation relation,

[γ1, ei φ2 ] = (−1)n12 . (35)

Also, the hermit conjugate of this is

[γ1, e−i φ2 ] = (−1)n12+1. (36)

Applying the same argument to γ2, we find

[γ2, e±i φ2 ] = −i(−1)n12 . (37)

The commutation relations (35), (36), and (37) are impor-
tant for the following argument on tunneling between a meso-
scopic superconductor and a normal metal lead mediated via
Majorana zero modes. Note that when the charging energy
is negligible, and the total electron-number are not restricted,
eq.(34) is changed to exp(iφ/2)γ1|0〉 = |2〉. Also, the ground
state is the superposition of different electron-number states
with the same fermion-parity, |G.S.〉 = ∑

n exp(inφ)|n〉. As a
result, one obtain [γ1, exp(±iφ/2)] = 0, which implies that we
can neglect the non-commutativity of Majorana fields and the
phase operator.

To take into account the phase fluctuation explicitly, we,
now, include the phase operator φ in the mode expansion of
an electron field (28),

ψσ(x) =
∑

i=1,2

uσi(x)γiei φ2 + (non-zero energy modes), (38)

Then, the tunneling Hamiltonian between normal metal leads
and the superconductor which couple at x = 0 and L is

HT =
∑

k,σ

∑

i=1,2

[Vkσic†kσγie−iφ/2 + h.c.], (39)

where c†kσ is a creation operator for an electron with momen-
tum k and spin σ in the normal metal leads, and Vkσi is the
tunneling amplitude between the leads and the superconduc-
tor. We, here, introduce operators defined by

f =
1√
2
γ1e−i φ2 , f † =

1√
2

ei φ2 γ1. (40)

This operator satisfies, f f † + f † f = 1, which is the fermionic
anti-commutation relation. However, we must examine care-
fully whether f and f † square to zero to establish that f
is a fermion operator. In fact, from eq.(36) it follows f 2 =
(e−iφ + (−1)n12γ1e−iφ/2)/2, and using (32), we find

f 2|0〉 = 0, ( f †)2|0〉 = 0. (41)

On the other hand, however, in a smiler manner, we obtain
f 2|1〉 = − 1

2 |1〉 and ( f †)2|1〉 = − 1
2 |1〉. Thus, f ( f †) is an an-

nihilation (a creation) operator for a fermion only when the
Hilbert space is restricted to |0〉. This situation occurs when
there is finite overlap between two Majorana zero modes γ1
and γ2 which generates an energy gap between |0〉 and |1〉, and
the state |0〉 is the lowest energy state. In the case that |1〉 is
the lowest energy state, we can use an alternative definition of
f given by f = exp(−iφ/2)γ1/

√
2. Then, it follows f 2|1〉 = 0,

( f †)2|1〉 = 0, while f 2|0〉 = − 1
2 |0〉, ( f †)2|0〉 = − 1

2 |0〉. Thus,
as long as only one of the two parity eigen states is realized
because of a finite energy gap, f and f † can be regarded as
fermion annihilation and creation operators.

Furthermore, the fermion operator f is also related to γ2
through the parity eigen value n12. For the definition (40), we
obtain the following relation,

1√
2
γ2e−i φ2 = −i(−1)n12 f ,

1√
2

ei φ2 γ2 = i f †(−1)n12 . (42)

Then, using (40) and (42), we can rewrite the tunnel Hamil-
tonian (39) into the form,

HT =
∑

k,σ

√
2[Vkσ1c†kσ f − i(−1)n12 Vkσ2c†kσ f

+V∗kσ1 f †ckσ + iV∗kσ2 f †ckσ(−1)n12 ]. (43)

This implies that electrons in the normal metal leads coupled
with Majorana modes at x = 0 via Vkσ1 and at x = L via Vkσ2
tunnel through the superconductor. This tunneling is mediated
by the f fermion, which is akin to resonant tunneling. But an
important difference is that the f fermion, which is indepen-
dent of spatial coordinates and time is not a point particle,
but an spatially extended object spreading over the supercon-
ducting region. This feature is a result of non-local correla-
tion of Majorana fermions at x = 0 and L. Since the tunneling
amplitude does not depend on L explicitly, we can call this
electron transfer process as ”teleportation”. We stress that this
”teleportation” does not break causality because of the above-
mentioned reason. This effect can be experimentally detected
as the AB effect. Let us consider the setup shown in Fig...
, which consists of a topological superconducting wire with
Majorana zero modes at boundary edges attached with a nor-
mal metal lead, constituting a ring geometry threaded by a
magnetic flux. Because of the single-electron resonant tun-
neling mediated via Majorana modes (43), at sufficiently low
temperatures for which quantum coherence of electrons in the
normal metal lead is retained, the AB effect with the periodic-
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modes, the total charge changes only by 2 at sufficiently low
temperatures, since single-particle excitations cost extra ener-
gies, and we consider e±iφ for particle-number changing oper-
ators instead of eq.(31). In contrast, in the case with Majorana
zero-energy modes at two edges x = 0 and L, of which the
Majorana fields are denoted as γ1 and γ2, respectively, the
states with n12 = 0 and 1 are the doubly-degenerate ground
states, and eq.(31) plays an important role.. For the suffi-
ciently large charging energy which constraints the total elec-
tron number n, the low energy states are restricted within only
two states with the total number of electrons n0 and n0+1 cor-
responding to the double degeneracy n12 = 0 and 1. We trun-
cate the Hilbert space, leaving only these two states. Then, n
takes only two values n0 and n0+1, and the commutation rela-
tion holds for φ and n12: [n12, e±i φ2 ] = ±e±i φ2 . In the truncated
Hilbert space, eq.(31) reads,

ei φ2 |0〉 = |1〉, e−i φ2 |1〉 = |0〉, ei φ2 |1〉 = 0, e−i φ2 |0〉 = 0. (32)

We also note that ei φ2 does not commute with the Majorana
operators γ1 and γ2. To see this, we consider the operation,

γ1ei φ2 |0〉 = γ1|1〉 = γ2
1 |0〉 = |0〉. (33)

Here we used eq.(32) and |1〉 = γ1|0〉 which follows from
ψ†12|0〉 = |1〉 and ψ12|0〉 = 0. Also, since

ei φ2 γ1|0〉 = ei φ2 |1〉 = 0, (34)

we obtain, [γ1, ei φ2 ]|0〉 = |0〉. In a similar way, we have
[γ1, ei φ2 ]|1〉 = −|1〉. Thus, for this truncated Hilbert space, γ1

and ei φ2 obey the commutation relation,

[γ1, ei φ2 ] = (−1)n12 . (35)

Also, the hermit conjugate of this is

[γ1, e−i φ2 ] = (−1)n12+1. (36)

Applying the same argument to γ2, we find

[γ2, e±i φ2 ] = −i(−1)n12 . (37)

The commutation relations (35), (36), and (37) are impor-
tant for the following argument on tunneling between a meso-
scopic superconductor and a normal metal lead mediated via
Majorana zero modes. Note that when the charging energy
is negligible, and the total electron-number are not restricted,
eq.(34) is changed to exp(iφ/2)γ1|0〉 = |2〉. Also, the ground
state is the superposition of different electron-number states
with the same fermion-parity, |G.S.〉 = ∑

n exp(inφ)|n〉. As a
result, one obtain [γ1, exp(±iφ/2)] = 0, which implies that we
can neglect the non-commutativity of Majorana fields and the
phase operator.

To take into account the phase fluctuation explicitly, we,
now, include the phase operator φ in the mode expansion of
an electron field (28),

ψσ(x) =
∑

i=1,2

uσi(x)γiei φ2 + (non-zero energy modes), (38)

Then, the tunneling Hamiltonian between normal metal leads
and the superconductor which couple at x = 0 and L is

HT =
∑

k,σ

∑

i=1,2

[Vkσic†kσγie−iφ/2 + h.c.], (39)

where c†kσ is a creation operator for an electron with momen-
tum k and spin σ in the normal metal leads, and Vkσi is the
tunneling amplitude between the leads and the superconduc-
tor. We, here, introduce operators defined by

f =
1√
2
γ1e−i φ2 , f † =

1√
2

ei φ2 γ1. (40)

This operator satisfies, f f † + f † f = 1, which is the fermionic
anti-commutation relation. However, we must examine care-
fully whether f and f † square to zero to establish that f
is a fermion operator. In fact, from eq.(36) it follows f 2 =
(e−iφ + (−1)n12γ1e−iφ/2)/2, and using (32), we find

f 2|0〉 = 0, ( f †)2|0〉 = 0. (41)

On the other hand, however, in a smiler manner, we obtain
f 2|1〉 = − 1

2 |1〉 and ( f †)2|1〉 = − 1
2 |1〉. Thus, f ( f †) is an an-

nihilation (a creation) operator for a fermion only when the
Hilbert space is restricted to |0〉. This situation occurs when
there is finite overlap between two Majorana zero modes γ1
and γ2 which generates an energy gap between |0〉 and |1〉, and
the state |0〉 is the lowest energy state. In the case that |1〉 is
the lowest energy state, we can use an alternative definition of
f given by f = exp(−iφ/2)γ1/

√
2. Then, it follows f 2|1〉 = 0,

( f †)2|1〉 = 0, while f 2|0〉 = − 1
2 |0〉, ( f †)2|0〉 = − 1

2 |0〉. Thus,
as long as only one of the two parity eigen states is realized
because of a finite energy gap, f and f † can be regarded as
fermion annihilation and creation operators.

Furthermore, the fermion operator f is also related to γ2
through the parity eigen value n12. For the definition (40), we
obtain the following relation,

1√
2
γ2e−i φ2 = −i(−1)n12 f ,

1√
2

ei φ2 γ2 = i f †(−1)n12 . (42)

Then, using (40) and (42), we can rewrite the tunnel Hamil-
tonian (39) into the form,

HT =
∑

k,σ

√
2[Vkσ1c†kσ f − i(−1)n12 Vkσ2c†kσ f

+V∗kσ1 f †ckσ + iV∗kσ2 f †ckσ(−1)n12 ]. (43)

This implies that electrons in the normal metal leads coupled
with Majorana modes at x = 0 via Vkσ1 and at x = L via Vkσ2
tunnel through the superconductor. This tunneling is mediated
by the f fermion, which is akin to resonant tunneling. But an
important difference is that the f fermion, which is indepen-
dent of spatial coordinates and time is not a point particle,
but an spatially extended object spreading over the supercon-
ducting region. This feature is a result of non-local correla-
tion of Majorana fermions at x = 0 and L. Since the tunneling
amplitude does not depend on L explicitly, we can call this
electron transfer process as ”teleportation”. We stress that this
”teleportation” does not break causality because of the above-
mentioned reason. This effect can be experimentally detected
as the AB effect. Let us consider the setup shown in Fig...
, which consists of a topological superconducting wire with
Majorana zero modes at boundary edges attached with a nor-
mal metal lead, constituting a ring geometry threaded by a
magnetic flux. Because of the single-electron resonant tun-
neling mediated via Majorana modes (43), at sufficiently low
temperatures for which quantum coherence of electrons in the
normal metal lead is retained, the AB effect with the periodic-
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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modes, the total charge changes only by 2 at sufficiently low
temperatures, since single-particle excitations cost extra ener-
gies, and we consider e±iφ for particle-number changing oper-
ators instead of eq.(31). In contrast, in the case with Majorana
zero-energy modes at two edges x = 0 and L, of which the
Majorana fields are denoted as γ1 and γ2, respectively, the
states with n12 = 0 and 1 are the doubly-degenerate ground
states, and eq.(31) plays an important role.. For the suffi-
ciently large charging energy which constraints the total elec-
tron number n, the low energy states are restricted within only
two states with the total number of electrons n0 and n0+1 cor-
responding to the double degeneracy n12 = 0 and 1. We trun-
cate the Hilbert space, leaving only these two states. Then, n
takes only two values n0 and n0+1, and the commutation rela-
tion holds for φ and n12: [n12, e±i φ2 ] = ±e±i φ2 . In the truncated
Hilbert space, eq.(31) reads,

ei φ2 |0〉 = |1〉, e−i φ2 |1〉 = |0〉, ei φ2 |1〉 = 0, e−i φ2 |0〉 = 0. (32)

We also note that ei φ2 does not commute with the Majorana
operators γ1 and γ2. To see this, we consider the operation,

γ1ei φ2 |0〉 = γ1|1〉 = γ2
1 |0〉 = |0〉. (33)

Here we used eq.(32) and |1〉 = γ1|0〉 which follows from
ψ†12|0〉 = |1〉 and ψ12|0〉 = 0. Also, since

ei φ2 γ1|0〉 = ei φ2 |1〉 = 0, (34)

we obtain, [γ1, ei φ2 ]|0〉 = |0〉. In a similar way, we have
[γ1, ei φ2 ]|1〉 = −|1〉. Thus, for this truncated Hilbert space, γ1

and ei φ2 obey the commutation relation,

[γ1, ei φ2 ] = (−1)n12 . (35)

Also, the hermit conjugate of this is

[γ1, e−i φ2 ] = (−1)n12+1. (36)

Applying the same argument to γ2, we find

[γ2, e±i φ2 ] = −i(−1)n12 . (37)

The commutation relations (35), (36), and (37) are impor-
tant for the following argument on tunneling between a meso-
scopic superconductor and a normal metal lead mediated via
Majorana zero modes. Note that when the charging energy
is negligible, and the total electron-number are not restricted,
eq.(34) is changed to exp(iφ/2)γ1|0〉 = |2〉. Also, the ground
state is the superposition of different electron-number states
with the same fermion-parity, |G.S.〉 = ∑

n exp(inφ)|n〉. As a
result, one obtain [γ1, exp(±iφ/2)] = 0, which implies that we
can neglect the non-commutativity of Majorana fields and the
phase operator.

To take into account the phase fluctuation explicitly, we,
now, include the phase operator φ in the mode expansion of
an electron field (28),

ψσ(x) =
∑

i=1,2

uσi(x)γiei φ2 + (non-zero energy modes), (38)

Then, the tunneling Hamiltonian between normal metal leads
and the superconductor which couple at x = 0 and L is

HT =
∑

k,σ

∑

i=1,2

[Vkσic†kσγie−iφ/2 + h.c.], (39)

where c†kσ is a creation operator for an electron with momen-
tum k and spin σ in the normal metal leads, and Vkσi is the
tunneling amplitude between the leads and the superconduc-
tor. We, here, introduce operators defined by

f =
1√
2
γ1e−i φ2 , f † =

1√
2

ei φ2 γ1. (40)

This operator satisfies, f f † + f † f = 1, which is the fermionic
anti-commutation relation. However, we must examine care-
fully whether f and f † square to zero to establish that f
is a fermion operator. In fact, from eq.(36) it follows f 2 =
(e−iφ + (−1)n12γ1e−iφ/2)/2, and using (32), we find

f 2|0〉 = 0, ( f †)2|0〉 = 0. (41)

On the other hand, however, in a smiler manner, we obtain
f 2|1〉 = − 1

2 |1〉 and ( f †)2|1〉 = − 1
2 |1〉. Thus, f ( f †) is an an-

nihilation (a creation) operator for a fermion only when the
Hilbert space is restricted to |0〉. This situation occurs when
there is finite overlap between two Majorana zero modes γ1
and γ2 which generates an energy gap between |0〉 and |1〉, and
the state |0〉 is the lowest energy state. In the case that |1〉 is
the lowest energy state, we can use an alternative definition of
f given by f = exp(−iφ/2)γ1/

√
2. Then, it follows f 2|1〉 = 0,

( f †)2|1〉 = 0, while f 2|0〉 = − 1
2 |0〉, ( f †)2|0〉 = − 1

2 |0〉. Thus,
as long as only one of the two parity eigen states is realized
because of a finite energy gap, f and f † can be regarded as
fermion annihilation and creation operators.

Furthermore, the fermion operator f is also related to γ2
through the parity eigen value n12. For the definition (40), we
obtain the following relation,

1√
2
γ2e−i φ2 = −i(−1)n12 f ,

1√
2

ei φ2 γ2 = i f †(−1)n12 . (42)

Then, using (40) and (42), we can rewrite the tunnel Hamil-
tonian (39) into the form,

HT =
∑

k,σ

√
2[Vkσ1c†kσ f − i(−1)n12 Vkσ2c†kσ f

+V∗kσ1 f †ckσ + iV∗kσ2 f †ckσ(−1)n12 ]. (43)

This implies that electrons in the normal metal leads coupled
with Majorana modes at x = 0 via Vkσ1 and at x = L via Vkσ2
tunnel through the superconductor. This tunneling is mediated
by the f fermion, which is akin to resonant tunneling. But an
important difference is that the f fermion, which is indepen-
dent of spatial coordinates and time is not a point particle,
but an spatially extended object spreading over the supercon-
ducting region. This feature is a result of non-local correla-
tion of Majorana fermions at x = 0 and L. Since the tunneling
amplitude does not depend on L explicitly, we can call this
electron transfer process as ”teleportation”. We stress that this
”teleportation” does not break causality because of the above-
mentioned reason. This effect can be experimentally detected
as the AB effect. Let us consider the setup shown in Fig...
, which consists of a topological superconducting wire with
Majorana zero modes at boundary edges attached with a nor-
mal metal lead, constituting a ring geometry threaded by a
magnetic flux. Because of the single-electron resonant tun-
neling mediated via Majorana modes (43), at sufficiently low
temperatures for which quantum coherence of electrons in the
normal metal lead is retained, the AB effect with the periodic-
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1√
2
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√
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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modes, the total charge changes only by 2 at sufficiently low
temperatures, since single-particle excitations cost extra ener-
gies, and we consider e±iφ for particle-number changing oper-
ators instead of eq.(31). In contrast, in the case with Majorana
zero-energy modes at two edges x = 0 and L, of which the
Majorana fields are denoted as γ1 and γ2, respectively, the
states with n12 = 0 and 1 are the doubly-degenerate ground
states, and eq.(31) plays an important role.. For the suffi-
ciently large charging energy which constraints the total elec-
tron number n, the low energy states are restricted within only
two states with the total number of electrons n0 and n0+1 cor-
responding to the double degeneracy n12 = 0 and 1. We trun-
cate the Hilbert space, leaving only these two states. Then, n
takes only two values n0 and n0+1, and the commutation rela-
tion holds for φ and n12: [n12, e±i φ2 ] = ±e±i φ2 . In the truncated
Hilbert space, eq.(31) reads,

ei φ2 |0〉 = |1〉, e−i φ2 |1〉 = |0〉, ei φ2 |1〉 = 0, e−i φ2 |0〉 = 0. (32)

We also note that ei φ2 does not commute with the Majorana
operators γ1 and γ2. To see this, we consider the operation,

γ1ei φ2 |0〉 = γ1|1〉 = γ2
1 |0〉 = |0〉. (33)

Here we used eq.(32) and |1〉 = γ1|0〉 which follows from
ψ†12|0〉 = |1〉 and ψ12|0〉 = 0. Also, since

ei φ2 γ1|0〉 = ei φ2 |1〉 = 0, (34)

we obtain, [γ1, ei φ2 ]|0〉 = |0〉. In a similar way, we have
[γ1, ei φ2 ]|1〉 = −|1〉. Thus, for this truncated Hilbert space, γ1

and ei φ2 obey the commutation relation,

[γ1, ei φ2 ] = (−1)n12 . (35)

Also, the hermit conjugate of this is

[γ1, e−i φ2 ] = (−1)n12+1. (36)

Applying the same argument to γ2, we find

[γ2, e±i φ2 ] = −i(−1)n12 . (37)

The commutation relations (35), (36), and (37) are impor-
tant for the following argument on tunneling between a meso-
scopic superconductor and a normal metal lead mediated via
Majorana zero modes. Note that when the charging energy
is negligible, and the total electron-number are not restricted,
eq.(34) is changed to exp(iφ/2)γ1|0〉 = |2〉. Also, the ground
state is the superposition of different electron-number states
with the same fermion-parity, |G.S.〉 = ∑

n exp(inφ)|n〉. As a
result, one obtain [γ1, exp(±iφ/2)] = 0, which implies that we
can neglect the non-commutativity of Majorana fields and the
phase operator.

To take into account the phase fluctuation explicitly, we,
now, include the phase operator φ in the mode expansion of
an electron field (28),

ψσ(x) =
∑

i=1,2

uσi(x)γiei φ2 + (non-zero energy modes), (38)

Then, the tunneling Hamiltonian between normal metal leads
and the superconductor which couple at x = 0 and L is

HT =
∑

k,σ

∑

i=1,2

[Vkσic†kσγie−iφ/2 + h.c.], (39)

where c†kσ is a creation operator for an electron with momen-
tum k and spin σ in the normal metal leads, and Vkσi is the
tunneling amplitude between the leads and the superconduc-
tor. We, here, introduce operators defined by

f =
1√
2
γ1e−i φ2 , f † =

1√
2

ei φ2 γ1. (40)

This operator satisfies, f f † + f † f = 1, which is the fermionic
anti-commutation relation. However, we must examine care-
fully whether f and f † square to zero to establish that f
is a fermion operator. In fact, from eq.(36) it follows f 2 =
(e−iφ + (−1)n12γ1e−iφ/2)/2, and using (32), we find

f 2|0〉 = 0, ( f †)2|0〉 = 0. (41)

On the other hand, however, in a smiler manner, we obtain
f 2|1〉 = − 1

2 |1〉 and ( f †)2|1〉 = − 1
2 |1〉. Thus, f ( f †) is an an-

nihilation (a creation) operator for a fermion only when the
Hilbert space is restricted to |0〉. This situation occurs when
there is finite overlap between two Majorana zero modes γ1
and γ2 which generates an energy gap between |0〉 and |1〉, and
the state |0〉 is the lowest energy state. In the case that |1〉 is
the lowest energy state, we can use an alternative definition of
f given by f = exp(−iφ/2)γ1/

√
2. Then, it follows f 2|1〉 = 0,

( f †)2|1〉 = 0, while f 2|0〉 = − 1
2 |0〉, ( f †)2|0〉 = − 1

2 |0〉. Thus,
as long as only one of the two parity eigen states is realized
because of a finite energy gap, f and f † can be regarded as
fermion annihilation and creation operators.

Furthermore, the fermion operator f is also related to γ2
through the parity eigen value n12. For the definition (40), we
obtain the following relation,

1√
2
γ2e−i φ2 = −i(−1)n12 f ,

1√
2

ei φ2 γ2 = i f †(−1)n12 . (42)

Then, using (40) and (42), we can rewrite the tunnel Hamil-
tonian (39) into the form,

HT =
∑

k,σ

√
2[Vkσ1c†kσ f − i(−1)n12 Vkσ2c†kσ f

+V∗kσ1 f †ckσ + iV∗kσ2 f †ckσ(−1)n12 ]. (43)

This implies that electrons in the normal metal leads coupled
with Majorana modes at x = 0 via Vkσ1 and at x = L via Vkσ2
tunnel through the superconductor. This tunneling is mediated
by the f fermion, which is akin to resonant tunneling. But an
important difference is that the f fermion, which is indepen-
dent of spatial coordinates and time is not a point particle,
but an spatially extended object spreading over the supercon-
ducting region. This feature is a result of non-local correla-
tion of Majorana fermions at x = 0 and L. Since the tunneling
amplitude does not depend on L explicitly, we can call this
electron transfer process as ”teleportation”. We stress that this
”teleportation” does not break causality because of the above-
mentioned reason. This effect can be experimentally detected
as the AB effect. Let us consider the setup shown in Fig...
, which consists of a topological superconducting wire with
Majorana zero modes at boundary edges attached with a nor-
mal metal lead, constituting a ring geometry threaded by a
magnetic flux. Because of the single-electron resonant tun-
neling mediated via Majorana modes (43), at sufficiently low
temperatures for which quantum coherence of electrons in the
normal metal lead is retained, the AB effect with the periodic-
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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modes, the total charge changes only by 2 at sufficiently low
temperatures, since single-particle excitations cost extra ener-
gies, and we consider e±iφ for particle-number changing oper-
ators instead of eq.(31). In contrast, in the case with Majorana
zero-energy modes at two edges x = 0 and L, of which the
Majorana fields are denoted as γ1 and γ2, respectively, the
states with n12 = 0 and 1 are the doubly-degenerate ground
states, and eq.(31) plays an important role.. For the suffi-
ciently large charging energy which constraints the total elec-
tron number n, the low energy states are restricted within only
two states with the total number of electrons n0 and n0+1 cor-
responding to the double degeneracy n12 = 0 and 1. We trun-
cate the Hilbert space, leaving only these two states. Then, n
takes only two values n0 and n0+1, and the commutation rela-
tion holds for φ and n12: [n12, e±i φ2 ] = ±e±i φ2 . In the truncated
Hilbert space, eq.(31) reads,

ei φ2 |0〉 = |1〉, e−i φ2 |1〉 = |0〉, ei φ2 |1〉 = 0, e−i φ2 |0〉 = 0. (32)

We also note that ei φ2 does not commute with the Majorana
operators γ1 and γ2. To see this, we consider the operation,

γ1ei φ2 |0〉 = γ1|1〉 = γ2
1 |0〉 = |0〉. (33)

Here we used eq.(32) and |1〉 = γ1|0〉 which follows from
ψ†12|0〉 = |1〉 and ψ12|0〉 = 0. Also, since

ei φ2 γ1|0〉 = ei φ2 |1〉 = 0, (34)

we obtain, [γ1, ei φ2 ]|0〉 = |0〉. In a similar way, we have
[γ1, ei φ2 ]|1〉 = −|1〉. Thus, for this truncated Hilbert space, γ1

and ei φ2 obey the commutation relation,

[γ1, ei φ2 ] = (−1)n12 . (35)

Also, the hermit conjugate of this is

[γ1, e−i φ2 ] = (−1)n12+1. (36)

Applying the same argument to γ2, we find

[γ2, e±i φ2 ] = −i(−1)n12 . (37)

The commutation relations (35), (36), and (37) are impor-
tant for the following argument on tunneling between a meso-
scopic superconductor and a normal metal lead mediated via
Majorana zero modes. Note that when the charging energy
is negligible, and the total electron-number are not restricted,
eq.(34) is changed to exp(iφ/2)γ1|0〉 = |2〉. Also, the ground
state is the superposition of different electron-number states
with the same fermion-parity, |G.S.〉 = ∑

n exp(inφ)|n〉. As a
result, one obtain [γ1, exp(±iφ/2)] = 0, which implies that we
can neglect the non-commutativity of Majorana fields and the
phase operator.

To take into account the phase fluctuation explicitly, we,
now, include the phase operator φ in the mode expansion of
an electron field (28),

ψσ(x) =
∑

i=1,2

uσi(x)γiei φ2 + (non-zero energy modes), (38)

Then, the tunneling Hamiltonian between normal metal leads
and the superconductor which couple at x = 0 and L is

HT =
∑

k,σ

∑

i=1,2

[Vkσic†kσγie−iφ/2 + h.c.], (39)

where c†kσ is a creation operator for an electron with momen-
tum k and spin σ in the normal metal leads, and Vkσi is the
tunneling amplitude between the leads and the superconduc-
tor. We, here, introduce operators defined by

f =
1√
2
γ1e−i φ2 , f † =

1√
2

ei φ2 γ1. (40)

This operator satisfies, f f † + f † f = 1, which is the fermionic
anti-commutation relation. However, we must examine care-
fully whether f and f † square to zero to establish that f
is a fermion operator. In fact, from eq.(36) it follows f 2 =
(e−iφ + (−1)n12γ1e−iφ/2)/2, and using (32), we find

f 2|0〉 = 0, ( f †)2|0〉 = 0. (41)

On the other hand, however, in a smiler manner, we obtain
f 2|1〉 = − 1

2 |1〉 and ( f †)2|1〉 = − 1
2 |1〉. Thus, f ( f †) is an an-

nihilation (a creation) operator for a fermion only when the
Hilbert space is restricted to |0〉. This situation occurs when
there is finite overlap between two Majorana zero modes γ1
and γ2 which generates an energy gap between |0〉 and |1〉, and
the state |0〉 is the lowest energy state. In the case that |1〉 is
the lowest energy state, we can use an alternative definition of
f given by f = exp(−iφ/2)γ1/

√
2. Then, it follows f 2|1〉 = 0,

( f †)2|1〉 = 0, while f 2|0〉 = − 1
2 |0〉, ( f †)2|0〉 = − 1

2 |0〉. Thus,
as long as only one of the two parity eigen states is realized
because of a finite energy gap, f and f † can be regarded as
fermion annihilation and creation operators.

Furthermore, the fermion operator f is also related to γ2
through the parity eigen value n12. For the definition (40), we
obtain the following relation,

1√
2
γ2e−i φ2 = i(−1)n12 f ,

1√
2

ei φ2 γ2 = −i(−1)n12 f †. (42)

Then, using (40) and (42), we can rewrite the tunnel Hamil-
tonian (39) into the form,

HT =
∑

k,σ

√
2[Vkσ1c†kσ f + i(−1)n12 Vkσ2c†kσ f

+V∗kσ1 f †ckσ − i(−1)n12 V∗kσ2 f †ckσ]. (43)

This implies that electrons in the normal metal leads coupled
with Majorana modes at x = 0 via Vkσ1 and at x = L via Vkσ2
tunnel through the superconductor. This tunneling is mediated
by the f fermion, which is akin to resonant tunneling. But an
important difference is that the f fermion, which is indepen-
dent of spatial coordinates and time is not a point particle,
but an spatially extended object spreading over the supercon-
ducting region. This feature is a result of non-local correla-
tion of Majorana fermions at x = 0 and L. Since the tunneling
amplitude does not depend on L explicitly, we can call this
electron transfer process as ”teleportation”. We stress that this
”teleportation” does not break causality because of the above-
mentioned reason. This effect can be experimentally detected
as the AB effect. Let us consider the setup shown in Fig...
, which consists of a topological superconducting wire with
Majorana zero modes at boundary edges attached with a nor-
mal metal lead, constituting a ring geometry threaded by a
magnetic flux. Because of the single-electron resonant tun-
neling mediated via Majorana modes (43), at sufficiently low
temperatures for which quantum coherence of electrons in the
normal metal lead is retained, the AB effect with the periodic-
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
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+
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2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
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Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or
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†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
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holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=
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2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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|seh|2 = 0, and hence, G = 0 irrespective of r0. In fact, in the
case of even nv, there is no chiral Majorana zero mode on the
edge of the superconductor, because, as mentioned before, the
total number of Majorana fermions including the edge state
and the vortex core states, which emerge from splitting orig-
inal electrons into two parts, must be even. The vanishing
zero-bais conductance G = 0 for even nv is consistent with
this physical picture. The quantized conductance G = 2e2/h
irrespective of the coupling strength between the lead and the
superconductor in the case of odd nv is very remarkable, char-
acterizing the non-Abelian character which leads to the per-
fect conversion between an electron and a hole, i.e. eq.(10).
The above argument can be generalized to more realistic cases
with multiple conducting channels in the lead. In such cases,
one of Majorana fermion fields from electrons (or holes) in
the lead couples to the chiral Majorana edge mode, if there
is only one chiral edge mode, leading to the quantized con-
ductance for this channel. However, because of contributions
from other channels which are not involved with perfect An-
dreev reflection mediated via a Majorana zero mode, the to-
tal conductance is not quantized generally. Thus, the observa-
tion of the non-Abelian character of Majorana fermions using
the one-lead conductance measurement is rather difficult for
realistic experimental setup. We need more sophisticated in-
terference experiments for the detection of the non-Abelian
statistics, which will be discussed in the next subsection.

It is noted that the above calculation for odd nv can be also
applicable to the case of nanowire, for which a Majorana edge
state is localized at the junction between the normal lead and
the superconducting wire. In this case, θ = 0, and thus we
obtain the quantized conductance G = 2e2/h. However, un-
derlying physics for the origin of the quantized conductance
here is a bit different from that in the case of 2D systems.
In 2D cases considered above, the quantized conductance is
a result of the braiding of Majorana fermions, featuring the
non-Abelian character, while in the case of nanowires, it is
due to perfect conversion of electrons and holes raised by the
Andreev reflection mediated via a Majorana zero mode.

4.5.2 Aharonov-Bohm effect and Aharonov-Casher effet
As seen in the previous section, the conductance does not

depend on the number of vortices nv encircled by the trajec-
tory of the propagating chiral Majorana edge mode when nv
is odd. This implies that in the case of odd nv, there is no
Aharonov-Bohm (AB) effect with respect to the magnetic flux
threaded in the superconductor. We note that this remarkable
feature is not due to charge-neutrality of Majorana fermions:
in fact, there is a sign change of a Majorana field, when it en-
circles a single vortex, as seen from the expression of a Majo-
rana field in terms of electron fields:

γi =
∑

σ

∫
dr[u0σi(r)ei φ2 c†σ(r) + v0σi(r)e−i φ2 cσ(r)], (25)

where φ is the phase of the superconducting gap. Instead,
however, the absence of the AB effect is understood as a
result of the non-commutativity of Majorana fermions, i.e.
the non-Abelian character. When a Majorana fermion trav-
els along the surface edge of the superconductor, the braiding
of the Majorana edge mode and a Majorana bound state in a
vortex core in the superconductor occurs, and the Majorana
edge state acquires a phase. Another incoming quasiparticle

gives rise to another braiding. However, this does not com-
mute with the previous one because of eq.(15), and hence the
resulting state cannot be an eigen state of both of these two
braiding operators. This results in dephasing of the interfer-
ence. Thus, the absence of the AB effect signifies the non-
Abelian statistics. A scheme utilizing this property for the de-
tection of the non-Abelian statistics was proposed by Grosfeld
and Stern. They consider Josephson-coupled superconductors
threaded by a magnetic flux, in which there is a Josephson
vortex at the junction, and furthermore electric charge Q is
put in a hole of the superconductor as well as the magnetic
flux Φ. (see Fig...) A key idea is to use the Aharonov-Casher
(AC) effect associated the Josephson vortex which carries a
Majorana zero mode. The AC effect is realized by chang-
ing the role of a charged particle and a magnetic flux in the
AB effect; i.e. a quantum mechanical particle with a mag-
netic dipole moving around a charge flux (an electric field) ac-
quires a phase due to the gauge field associated with the elec-
tric field. Thus, the vortex current Jv carried by the conven-
tional Josephson vortex without a Majorana fermion exhibits
the periodic-dependence on the charge Q in the hole of the
system, Jv ∼ Jv0 + Jv1 cos(2π Q

2e ). However, in the setup con-
sidered here, the Josephson vortex harbors a Majorana zero
mode, and hence the AC effect of the moving Josephson vor-
tex disappears when the number of vortices in the center hole
nv is odd; i.e. there are odd number of Majorana fermions in
the inner part of the junction system encircled by the trajec-
tory of the Josephson vortex. The absence of the AC effect is
due to the above-mentioned mechanism of dephasing raised
by non-commutativity of Majorana fermions in the Josephson
vortex and in the inner part of the junction.

5. ”Fractionalization”– 4π-periodic Josephson effect
As seen in previous sections, a Majorana fermion field of

superconductors emerges from separating the real or imagi-
nary parts of a complex fermion field of an electron. In this
sense, an electron fractionalizes into two Majorana fermions.
It should be noted that this is not fractionalization raised
by intrinsic topological order which is realized in the frac-
tional quantum Hall effect states, and leads to fractionalized
quasiparticles. In fact, there is no intrinsic topological order
in topological superconductors. However, the ”fractionaliza-
tion” into Majorana fermions gives rise to some interesting
electromagnetic properties. One of the most remarkable phe-
nomena is the 4π-periodic Josephson effect. To explain this,
let us consider a Josephson junction system with a ring geom-
etry shown in Fig...., where a magnetic fluxΦ threads the hole
of the ring. This is a superconductor-insulator-superconductor
junction, and the phase difference between two junction sep-
arated via the small insulating region is φ = 2e

h Φ. Then, the
single-electron tunneling Hamiltonian is H1t = −teiφψ†σ1ψσ2+
h.c., where ψσ1 and ψσ2 are electron fields at two junctions.
Also, in the case with Majorana zero-energy modes, the mode
expansion of the electron fields is given by

ψσi = uσi(x)γi + (non-zero energy modes), (26)

with i = 1, 2. Thus, the single-electron tunneling Hamiltonian
reads,

H1t = JMiγ1γ2 cos
φ

2
, (27)
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|seh|2 = 0, and hence, G = 0 irrespective of r0. In fact, in the
case of even nv, there is no chiral Majorana zero mode on the
edge of the superconductor, because, as mentioned before, the
total number of Majorana fermions including the edge state
and the vortex core states, which emerge from splitting orig-
inal electrons into two parts, must be even. The vanishing
zero-bais conductance G = 0 for even nv is consistent with
this physical picture. The quantized conductance G = 2e2/h
irrespective of the coupling strength between the lead and the
superconductor in the case of odd nv is very remarkable, char-
acterizing the non-Abelian character which leads to the per-
fect conversion between an electron and a hole, i.e. eq.(10).
The above argument can be generalized to more realistic cases
with multiple conducting channels in the lead. In such cases,
one of Majorana fermion fields from electrons (or holes) in
the lead couples to the chiral Majorana edge mode, if there
is only one chiral edge mode, leading to the quantized con-
ductance for this channel. However, because of contributions
from other channels which are not involved with perfect An-
dreev reflection mediated via a Majorana zero mode, the to-
tal conductance is not quantized generally. Thus, the observa-
tion of the non-Abelian character of Majorana fermions using
the one-lead conductance measurement is rather difficult for
realistic experimental setup. We need more sophisticated in-
terference experiments for the detection of the non-Abelian
statistics, which will be discussed in the next subsection.

It is noted that the above calculation for odd nv can be also
applicable to the case of nanowire, for which a Majorana edge
state is localized at the junction between the normal lead and
the superconducting wire. In this case, θ = 0, and thus we
obtain the quantized conductance G = 2e2/h. However, un-
derlying physics for the origin of the quantized conductance
here is a bit different from that in the case of 2D systems.
In 2D cases considered above, the quantized conductance is
a result of the braiding of Majorana fermions, featuring the
non-Abelian character, while in the case of nanowires, it is
due to perfect conversion of electrons and holes raised by the
Andreev reflection mediated via a Majorana zero mode.

4.5.2 Aharonov-Bohm effect and Aharonov-Casher effet
As seen in the previous section, the conductance does not

depend on the number of vortices nv encircled by the trajec-
tory of the propagating chiral Majorana edge mode when nv
is odd. This implies that in the case of odd nv, there is no
Aharonov-Bohm (AB) effect with respect to the magnetic flux
threaded in the superconductor. We note that this remarkable
feature is not due to charge-neutrality of Majorana fermions:
in fact, there is a sign change of a Majorana field, when it en-
circles a single vortex, as seen from the expression of a Majo-
rana field in terms of electron fields:

γi =
∑

σ

∫
dr[u0σi(r)ei φ2 c†σ(r) + v0σi(r)e−i φ2 cσ(r)], (25)

where φ is the phase of the superconducting gap. Instead,
however, the absence of the AB effect is understood as a
result of the non-commutativity of Majorana fermions, i.e.
the non-Abelian character. When a Majorana fermion trav-
els along the surface edge of the superconductor, the braiding
of the Majorana edge mode and a Majorana bound state in a
vortex core in the superconductor occurs, and the Majorana
edge state acquires a phase. Another incoming quasiparticle

gives rise to another braiding. However, this does not com-
mute with the previous one because of eq.(15), and hence the
resulting state cannot be an eigen state of both of these two
braiding operators. This results in dephasing of the interfer-
ence. Thus, the absence of the AB effect signifies the non-
Abelian statistics. A scheme utilizing this property for the de-
tection of the non-Abelian statistics was proposed by Grosfeld
and Stern. They consider Josephson-coupled superconductors
threaded by a magnetic flux, in which there is a Josephson
vortex at the junction, and furthermore electric charge Q is
put in a hole of the superconductor as well as the magnetic
flux Φ. (see Fig...) A key idea is to use the Aharonov-Casher
(AC) effect associated the Josephson vortex which carries a
Majorana zero mode. The AC effect is realized by chang-
ing the role of a charged particle and a magnetic flux in the
AB effect; i.e. a quantum mechanical particle with a mag-
netic dipole moving around a charge flux (an electric field) ac-
quires a phase due to the gauge field associated with the elec-
tric field. Thus, the vortex current Jv carried by the conven-
tional Josephson vortex without a Majorana fermion exhibits
the periodic-dependence on the charge Q in the hole of the
system, Jv ∼ Jv0 + Jv1 cos(2π Q

2e ). However, in the setup con-
sidered here, the Josephson vortex harbors a Majorana zero
mode, and hence the AC effect of the moving Josephson vor-
tex disappears when the number of vortices in the center hole
nv is odd; i.e. there are odd number of Majorana fermions in
the inner part of the junction system encircled by the trajec-
tory of the Josephson vortex. The absence of the AC effect is
due to the above-mentioned mechanism of dephasing raised
by non-commutativity of Majorana fermions in the Josephson
vortex and in the inner part of the junction.

5. ”Fractionalization”– 4π-periodic Josephson effect
As seen in previous sections, a Majorana fermion field of

superconductors emerges from separating the real or imagi-
nary parts of a complex fermion field of an electron. In this
sense, an electron fractionalizes into two Majorana fermions.
It should be noted that this is not fractionalization raised
by intrinsic topological order which is realized in the frac-
tional quantum Hall effect states, and leads to fractionalized
quasiparticles. In fact, there is no intrinsic topological order
in topological superconductors. However, the ”fractionaliza-
tion” into Majorana fermions gives rise to some interesting
electromagnetic properties. One of the most remarkable phe-
nomena is the 4π-periodic Josephson effect. To explain this,
let us consider a Josephson junction system with a ring geom-
etry shown in Fig...., where a magnetic fluxΦ threads the hole
of the ring. This is a superconductor-insulator-superconductor
junction, and the phase difference between two junction sep-
arated via the small insulating region is φ = 2e

h Φ. Then, the
single-electron tunneling Hamiltonian is H1t = −teiφψ†σ1ψσ2+
h.c., where ψσ1 and ψσ2 are electron fields at two junctions.
Also, in the case with Majorana zero-energy modes, the mode
expansion of the electron fields is given by

ψσi = uσi(x)γi + (non-zero energy modes), (26)

with i = 1, 2. Thus, the single-electron tunneling Hamiltonian
reads,

H1t = JMiγ1γ2 cos
φ

2
, (27)
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|seh|2 = 0, and hence, G = 0 irrespective of r0. In fact, in the
case of even nv, there is no chiral Majorana zero mode on the
edge of the superconductor, because, as mentioned before, the
total number of Majorana fermions including the edge state
and the vortex core states, which emerge from splitting orig-
inal electrons into two parts, must be even. The vanishing
zero-bais conductance G = 0 for even nv is consistent with
this physical picture. The quantized conductance G = 2e2/h
irrespective of the coupling strength between the lead and the
superconductor in the case of odd nv is very remarkable, char-
acterizing the non-Abelian character which leads to the per-
fect conversion between an electron and a hole, i.e. eq.(10).
The above argument can be generalized to more realistic cases
with multiple conducting channels in the lead. In such cases,
one of Majorana fermion fields from electrons (or holes) in
the lead couples to the chiral Majorana edge mode, if there
is only one chiral edge mode, leading to the quantized con-
ductance for this channel. However, because of contributions
from other channels which are not involved with perfect An-
dreev reflection mediated via a Majorana zero mode, the to-
tal conductance is not quantized generally. Thus, the observa-
tion of the non-Abelian character of Majorana fermions using
the one-lead conductance measurement is rather difficult for
realistic experimental setup. We need more sophisticated in-
terference experiments for the detection of the non-Abelian
statistics, which will be discussed in the next subsection.

It is noted that the above calculation for odd nv can be also
applicable to the case of nanowire, for which a Majorana edge
state is localized at the junction between the normal lead and
the superconducting wire. In this case, θ = 0, and thus we
obtain the quantized conductance G = 2e2/h. However, un-
derlying physics for the origin of the quantized conductance
here is a bit different from that in the case of 2D systems.
In 2D cases considered above, the quantized conductance is
a result of the braiding of Majorana fermions, featuring the
non-Abelian character, while in the case of nanowires, it is
due to perfect conversion of electrons and holes raised by the
Andreev reflection mediated via a Majorana zero mode.

4.5.2 Aharonov-Bohm effect and Aharonov-Casher effet
As seen in the previous section, the conductance does not

depend on the number of vortices nv encircled by the trajec-
tory of the propagating chiral Majorana edge mode when nv
is odd. This implies that in the case of odd nv, there is no
Aharonov-Bohm (AB) effect with respect to the magnetic flux
threaded in the superconductor. We note that this remarkable
feature is not due to charge-neutrality of Majorana fermions:
in fact, there is a sign change of a Majorana field, when it en-
circles a single vortex, as seen from the expression of a Majo-
rana field in terms of electron fields:

γi =
∑

σ

∫
dr[u0σi(r)ei φ2 c†σ(r) + v0σi(r)e−i φ2 cσ(r)], (25)

where φ is the phase of the superconducting gap. Instead,
however, the absence of the AB effect is understood as a
result of the non-commutativity of Majorana fermions, i.e.
the non-Abelian character. When a Majorana fermion trav-
els along the surface edge of the superconductor, the braiding
of the Majorana edge mode and a Majorana bound state in a
vortex core in the superconductor occurs, and the Majorana
edge state acquires a phase. Another incoming quasiparticle

gives rise to another braiding. However, this does not com-
mute with the previous one because of eq.(15), and hence the
resulting state cannot be an eigen state of both of these two
braiding operators. This results in dephasing of the interfer-
ence. Thus, the absence of the AB effect signifies the non-
Abelian statistics. A scheme utilizing this property for the de-
tection of the non-Abelian statistics was proposed by Grosfeld
and Stern. They consider Josephson-coupled superconductors
threaded by a magnetic flux, in which there is a Josephson
vortex at the junction, and furthermore electric charge Q is
put in a hole of the superconductor as well as the magnetic
flux Φ. (see Fig...) A key idea is to use the Aharonov-Casher
(AC) effect associated the Josephson vortex which carries a
Majorana zero mode. The AC effect is realized by chang-
ing the role of a charged particle and a magnetic flux in the
AB effect; i.e. a quantum mechanical particle with a mag-
netic dipole moving around a charge flux (an electric field) ac-
quires a phase due to the gauge field associated with the elec-
tric field. Thus, the vortex current Jv carried by the conven-
tional Josephson vortex without a Majorana fermion exhibits
the periodic-dependence on the charge Q in the hole of the
system, Jv ∼ Jv0 + Jv1 cos(2π Q

2e ). However, in the setup con-
sidered here, the Josephson vortex harbors a Majorana zero
mode, and hence the AC effect of the moving Josephson vor-
tex disappears when the number of vortices in the center hole
nv is odd; i.e. there are odd number of Majorana fermions in
the inner part of the junction system encircled by the trajec-
tory of the Josephson vortex. The absence of the AC effect is
due to the above-mentioned mechanism of dephasing raised
by non-commutativity of Majorana fermions in the Josephson
vortex and in the inner part of the junction.

5. ”Fractionalization”– 4π-periodic Josephson effect
As seen in previous sections, a Majorana fermion field of

superconductors emerges from separating the real or imagi-
nary parts of a complex fermion field of an electron. In this
sense, an electron fractionalizes into two Majorana fermions.
It should be noted that this is not fractionalization raised
by intrinsic topological order which is realized in the frac-
tional quantum Hall effect states, and leads to fractionalized
quasiparticles. In fact, there is no intrinsic topological order
in topological superconductors. However, the ”fractionaliza-
tion” into Majorana fermions gives rise to some interesting
electromagnetic properties. One of the most remarkable phe-
nomena is the 4π-periodic Josephson effect. To explain this,
let us consider a Josephson junction system with a ring geom-
etry shown in Fig...., where a magnetic fluxΦ threads the hole
of the ring. This is a superconductor-insulator-superconductor
junction, and the phase difference between two junction sep-
arated via the small insulating region is φ = 2e

h Φ. Then, the
single-electron tunneling Hamiltonian is H1t = −teiφψ†σ1ψσ2+
h.c., where ψσ1 and ψσ2 are electron fields at two junctions.
Also, in the case with Majorana zero-energy modes, the mode
expansion of the electron fields is given by

ψσi = uσi(x)γi + (non-zero energy modes), (26)

with i = 1, 2. Thus, the single-electron tunneling Hamiltonian
reads,

H1t = JMiγ1γ2 cos
φ

2
, (27)
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|seh|2 = 0, and hence, G = 0 irrespective of r0. In fact, in the
case of even nv, there is no chiral Majorana zero mode on the
edge of the superconductor, because, as mentioned before, the
total number of Majorana fermions including the edge state
and the vortex core states, which emerge from splitting orig-
inal electrons into two parts, must be even. The vanishing
zero-bais conductance G = 0 for even nv is consistent with
this physical picture. The quantized conductance G = 2e2/h
irrespective of the coupling strength between the lead and the
superconductor in the case of odd nv is very remarkable, char-
acterizing the non-Abelian character which leads to the per-
fect conversion between an electron and a hole, i.e. eq.(10).
The above argument can be generalized to more realistic cases
with multiple conducting channels in the lead. In such cases,
one of Majorana fermion fields from electrons (or holes) in
the lead couples to the chiral Majorana edge mode, if there
is only one chiral edge mode, leading to the quantized con-
ductance for this channel. However, because of contributions
from other channels which are not involved with perfect An-
dreev reflection mediated via a Majorana zero mode, the to-
tal conductance is not quantized generally. Thus, the observa-
tion of the non-Abelian character of Majorana fermions using
the one-lead conductance measurement is rather difficult for
realistic experimental setup. We need more sophisticated in-
terference experiments for the detection of the non-Abelian
statistics, which will be discussed in the next subsection.

It is noted that the above calculation for odd nv can be also
applicable to the case of nanowire, for which a Majorana edge
state is localized at the junction between the normal lead and
the superconducting wire. In this case, θ = 0, and thus we
obtain the quantized conductance G = 2e2/h. However, un-
derlying physics for the origin of the quantized conductance
here is a bit different from that in the case of 2D systems.
In 2D cases considered above, the quantized conductance is
a result of the braiding of Majorana fermions, featuring the
non-Abelian character, while in the case of nanowires, it is
due to perfect conversion of electrons and holes raised by the
Andreev reflection mediated via a Majorana zero mode.

4.5.2 Aharonov-Bohm effect and Aharonov-Casher effet
As seen in the previous section, the conductance does not

depend on the number of vortices nv encircled by the trajec-
tory of the propagating chiral Majorana edge mode when nv
is odd. This implies that in the case of odd nv, there is no
Aharonov-Bohm (AB) effect with respect to the magnetic flux
threaded in the superconductor. We note that this remarkable
feature is not due to charge-neutrality of Majorana fermions:
in fact, there is a sign change of a Majorana field, when it en-
circles a single vortex, as seen from the expression of a Majo-
rana field in terms of electron fields:

γi =
∑

σ

∫
dr[u0σi(r)ei φ2 c†σ(r) + v0σi(r)e−i φ2 cσ(r)], (25)

where φ is the phase of the superconducting gap. Instead,
however, the absence of the AB effect is understood as a
result of the non-commutativity of Majorana fermions, i.e.
the non-Abelian character. When a Majorana fermion trav-
els along the surface edge of the superconductor, the braiding
of the Majorana edge mode and a Majorana bound state in a
vortex core in the superconductor occurs, and the Majorana
edge state acquires a phase. Another incoming quasiparticle

gives rise to another braiding. However, this does not com-
mute with the previous one because of eq.(15), and hence the
resulting state cannot be an eigen state of both of these two
braiding operators. This results in dephasing of the interfer-
ence. Thus, the absence of the AB effect signifies the non-
Abelian statistics. A scheme utilizing this property for the de-
tection of the non-Abelian statistics was proposed by Grosfeld
and Stern. They consider Josephson-coupled superconductors
threaded by a magnetic flux, in which there is a Josephson
vortex at the junction, and furthermore electric charge Q is
put in a hole of the superconductor as well as the magnetic
flux Φ. (see Fig...) A key idea is to use the Aharonov-Casher
(AC) effect associated the Josephson vortex which carries a
Majorana zero mode. The AC effect is realized by chang-
ing the role of a charged particle and a magnetic flux in the
AB effect; i.e. a quantum mechanical particle with a mag-
netic dipole moving around a charge flux (an electric field) ac-
quires a phase due to the gauge field associated with the elec-
tric field. Thus, the vortex current Jv carried by the conven-
tional Josephson vortex without a Majorana fermion exhibits
the periodic-dependence on the charge Q in the hole of the
system, Jv ∼ Jv0 + Jv1 cos(2π Q

2e ). However, in the setup con-
sidered here, the Josephson vortex harbors a Majorana zero
mode, and hence the AC effect of the moving Josephson vor-
tex disappears when the number of vortices in the center hole
nv is odd; i.e. there are odd number of Majorana fermions in
the inner part of the junction system encircled by the trajec-
tory of the Josephson vortex. The absence of the AC effect is
due to the above-mentioned mechanism of dephasing raised
by non-commutativity of Majorana fermions in the Josephson
vortex and in the inner part of the junction.

5. ”Fractionalization”– 4π-periodic Josephson effect
As seen in previous sections, a Majorana fermion field of

superconductors emerges from separating the real or imagi-
nary parts of a complex fermion field of an electron. In this
sense, an electron fractionalizes into two Majorana fermions.
It should be noted that this is not fractionalization raised
by intrinsic topological order which is realized in the frac-
tional quantum Hall effect states, and leads to fractionalized
quasiparticles. In fact, there is no intrinsic topological order
in topological superconductors. However, the ”fractionaliza-
tion” into Majorana fermions gives rise to some interesting
electromagnetic properties. One of the most remarkable phe-
nomena is the 4π-periodic Josephson effect. To explain this,
let us consider a Josephson junction system with a ring geom-
etry shown in Fig...., where a magnetic fluxΦ threads the hole
of the ring. This is a superconductor-insulator-superconductor
junction, and the phase difference between two junction sep-
arated via the small insulating region is φ = 2e

h Φ. Then, the
single-electron tunneling Hamiltonian is H1t = −teiφψ†σ1ψσ2+
h.c., where ψσ1 and ψσ2 are electron fields at two junctions.
Also, in the case with Majorana zero-energy modes, the mode
expansion of the electron fields is given by

ψσi = uσi(x)γi + (non-zero energy modes), (26)

with i = 1, 2. Thus, the single-electron tunneling Hamiltonian
reads,

H1t = JMiγ1γ2 cos
φ

2
, (27)
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total number of Majorana fermions including the edge state
and the vortex core states, which emerge from splitting orig-
inal electrons into two parts, must be even. The vanishing
zero-bais conductance G = 0 for even nv is consistent with
this physical picture. The quantized conductance G = 2e2/h
irrespective of the coupling strength between the lead and the
superconductor in the case of odd nv is very remarkable, char-
acterizing the non-Abelian character which leads to the per-
fect conversion between an electron and a hole, i.e. eq.(10).
The above argument can be generalized to more realistic cases
with multiple conducting channels in the lead. In such cases,
one of Majorana fermion fields from electrons (or holes) in
the lead couples to the chiral Majorana edge mode, if there
is only one chiral edge mode, leading to the quantized con-
ductance for this channel. However, because of contributions
from other channels which are not involved with perfect An-
dreev reflection mediated via a Majorana zero mode, the to-
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tion of the non-Abelian character of Majorana fermions using
the one-lead conductance measurement is rather difficult for
realistic experimental setup. We need more sophisticated in-
terference experiments for the detection of the non-Abelian
statistics, which will be discussed in the next subsection.
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where φ is the phase of the superconducting gap. Instead,
however, the absence of the AB effect is understood as a
result of the non-commutativity of Majorana fermions, i.e.
the non-Abelian character. When a Majorana fermion trav-
els along the surface edge of the superconductor, the braiding
of the Majorana edge mode and a Majorana bound state in a
vortex core in the superconductor occurs, and the Majorana
edge state acquires a phase. Another incoming quasiparticle

gives rise to another braiding. However, this does not com-
mute with the previous one because of eq.(15), and hence the
resulting state cannot be an eigen state of both of these two
braiding operators. This results in dephasing of the interfer-
ence. Thus, the absence of the AB effect signifies the non-
Abelian statistics. A scheme utilizing this property for the de-
tection of the non-Abelian statistics was proposed by Grosfeld
and Stern. They consider Josephson-coupled superconductors
threaded by a magnetic flux, in which there is a Josephson
vortex at the junction, and furthermore electric charge Q is
put in a hole of the superconductor as well as the magnetic
flux Φ. (see Fig...) A key idea is to use the Aharonov-Casher
(AC) effect associated the Josephson vortex which carries a
Majorana zero mode. The AC effect is realized by chang-
ing the role of a charged particle and a magnetic flux in the
AB effect; i.e. a quantum mechanical particle with a mag-
netic dipole moving around a charge flux (an electric field) ac-
quires a phase due to the gauge field associated with the elec-
tric field. Thus, the vortex current Jv carried by the conven-
tional Josephson vortex without a Majorana fermion exhibits
the periodic-dependence on the charge Q in the hole of the
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mode, and hence the AC effect of the moving Josephson vor-
tex disappears when the number of vortices in the center hole
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tory of the Josephson vortex. The absence of the AC effect is
due to the above-mentioned mechanism of dephasing raised
by non-commutativity of Majorana fermions in the Josephson
vortex and in the inner part of the junction.

5. ”Fractionalization”– 4π-periodic Josephson effect
As seen in previous sections, a Majorana fermion field of

superconductors emerges from separating the real or imagi-
nary parts of a complex fermion field of an electron. In this
sense, an electron fractionalizes into two Majorana fermions.
It should be noted that this is not fractionalization raised
by intrinsic topological order which is realized in the frac-
tional quantum Hall effect states, and leads to fractionalized
quasiparticles. In fact, there is no intrinsic topological order
in topological superconductors. However, the ”fractionaliza-
tion” into Majorana fermions gives rise to some interesting
electromagnetic properties. One of the most remarkable phe-
nomena is the 4π-periodic Josephson effect. To explain this,
let us consider a Josephson junction system with a ring geom-
etry shown in Fig...., where a magnetic fluxΦ threads the hole
of the ring. This is a superconductor-insulator-superconductor
junction, and the phase difference between two junction sep-
arated via the small insulating region is φ = 2e

h Φ. Then, the
single-electron tunneling Hamiltonian is H1t = −teiφψ†σ1ψσ2+
h.c., where ψσ1 and ψσ2 are electron fields at two junctions.
Also, in the case with Majorana zero-energy modes, the mode
expansion of the electron fields is given by

ψσi = uσi(x)γi + (non-zero energy modes), (26)

with i = 1, 2. Thus, the single-electron tunneling Hamiltonian
reads,
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.

γi → γ j, γ j → −γi. (3)

We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
rana fermion traverses the branch cut. However, as mentioned
before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will

2

J. Phys. Soc. Jpn. INVITED REVIEW PAPERS
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Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
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edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
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that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
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is the following rule for the exchange of any pairs of two Ma-
jorana fields, γi and γ j.
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We will see in the next subsection that the exchange (braid-
ing) rule (3) gives rise to the non-Abelian statistics of Majo-
rana zero-energy modes. Note that in Eq. (3) one Majorana
field changes its sign, while the other does not. This peculiar
behavior is often understood as an effect of phase-winding of
a vortex where a Majorana fermion exists: i.e. vortices with
Majorana modes accompany branch cut at which the phase
jumps by 2π, and thus, the braiding of two vortices lead to
phase change π of one of the Majorana fields when the Majo-
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before, the non-Abelian statistics realizes even for Majorana
edge states in a nanowire, and Eq.(3) holds also in such cases
without vortices. To see this, let us consider the braiding of γ1
and γ2 more precisely. To proceed the argument, we assume
that the topological ground state is separated from the first ex-
cited state by a finite energy gap, and the exchange is carried
out adiabatically within this ground state manifold. Then, the
Majorana zero modes are still Majorana zero modes after the
exchange operation. This exchange operation is described by
a unitary operator U12. We recall that all Majorana fields are
expressed by linear combinations of fields of electrons with
coefficients given by the wave function of the Bogoliubov-de-
Gennes Hamiltonian. Thus, according to the adiabatic theo-
rem, after the braiding operation, γ1(2) is moved to γ2(1) with
an additional phase factor denoted by s2(1). Then, we obtain,

s2γ2 = U12γ1U†12, s1γ1 = U12γ2U†12. (4)

Since s2
1γ

2
1 = γ2

2 = 1, and γ2
1 = 1, we have s1 = 1 or

−1. Similarly, s2 = 1 or −1. Combining the Majorana zero
modes γ1 and γ2, we can construct a complex fermion field
ψ12 = (γ1 + iγ2)/2. The occupation number of the complex
fermion n12 = ψ†12ψ12 is 1 or 0. Thus, the state that con-
sists of γ1 and γ2 only is doubly-degenerate. More generally,
if N = 2m with m an integer, we can construct m complex
fermion fields from 2m Majorana fields, and each complex
fermion state is occupied or un-occupied, which leads to the
total degeneracy 2m. This is so-called topological degener-
acy. We note that this degeneracy can not be lifted by local
perturbations as long as the system is isolated. This prop-
erty is important in connection with the application to topo-
logical quantum computation, which we will mention later.
Since Majorana fields are given by the superposition of origi-
nal electron fields, the total number of the complex fermions
is nothing but the number of quasiparticles which arises from
breaking up Cooper pairs in a superconductor. This implies
that the parity of the total occupation number must be pre-
served for an isolated system, since destruction or creation of
a Cooper pair changes the number of quasiparticles only by
2. Hence, the degeneracy is reduced to 2m−1 for each parity
sector. Keeping this in mind, now, we consider how the occu-
pation number,

n12 = ψ
†
12ψ12 =

1
2

(1 + iγ1γ2), (5)

is affected by the exchange of γ1 and γ2. Operating U12 on

n12, we obtain,

U12n12U†12 =
1
2
+

i
2

U12γ1γ2U†12 =
1
2
− i

2
s1s2γ1γ2. (6)

Here, we used Eq.(4). In the case of N = 2, i.e. there are
only two Majorana zero modes γ1 and γ2, the parity of the
occupation number n12 must not be changed by the exchange
operation. Then, we have s1s2 = −1. On the other hand, in
the case of N > 2, it is not so trivial whether the parity of
n12 is changed or not by U12. However, if each Majorana zero
modes are spatially well separated, the exchange of γ1 and
γ2 can not affect the occupation numbers of complex fermion
states composed of the other Majorana zero modes, i.e. ni j =

ψ†i jψi j with ψi j = (γi + iγ j)/2 for i, j = 3, 4, 5, ...,N, and i !
j. Otherwise, the exchange of γ1 and γ2 can affect fermion
states infinitely far away from them ! Thus, n12 = U†12n12U12
holds, and we obtain s1s2 = −1. This leads to the rule (3).
Depending on the gauge choice and the choice of the left-
handed or right-handed rotation, we have s1 = 1, s2 = −1,
or s1 = −1, s2 = 1. Note that in the above argument, the
presence or absence of vortices does not play any role, and
hence Eq.(3) holds for any Majorana zero modes realized in
topological superconductors.

The unitary operator Ui j for the exchange operation of γi
and γ j can be conveniently expressed as,

Ui j = exp
(
−π

4
γiγ j

)
=

1√
2

(1 − γiγ j). (7)

It is easy to verify that Eq. (7) leads to the following exchange
rule.

γ j = Ui jγiU†i j, −γi = Ui jγ jU†i j. (8)

4.2 Non-Abelian statistics
As mentioned above, the non-Abelian statistics is charac-

terized by non-commutativity of the exchange operation of
identical particles. To demonstrate this, we consider a simple
system which consists of four Majorana fermions, γ1, γ2, γ3,
and γ4. Let us see what happens when the Majorana fermion
γ3 is moved adiabatically around the Majorana fermion γ1,
and returns to the original position; i.e. the trajectory encir-
cles γ1, which amounts to twice exchange operation of γ1 and
γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,

iγ1γ2 = σz, iγ2γ3 = σx, iγ1γ3 = σy. (9)

We can verify that σx,y,z defined above actually satisfy the
commutation relation for the Pauli matrices, [σµ,σν] =
2iεµνλσλ with µ, ν, λ = x, y, z. It is also noted that from eq.
(5), the occupation number of the complex fermion ψ12 =
(γ1 + iγ2)/2 is expressed by the eigen value of σz, i.e. n12 =
1
2 (1+σz). We denote the state vector with the occupation num-
ber n12 as |n12〉, which is also the eigen state of σz; i.e. σz = 1
for |1〉 and σz = −1 for |0〉. Then, since twice operation of
exchange of γ1 and γ3 is expressed as (U31)2 = e−

π
2 γ3γ1 =

−γ3γ1 = −iσy, the resulting states after the operation are

(U31)2|1〉 = |0〉, (U31)2|0〉 = −|1〉. (10)

Thus, this operation changes the parity of the occupation
number of ψ12; i.e. an electron state |1〉 is transformed into
a hole state |0〉 and vice versa. In the next section, we will
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γ3 (see Fig. ...). An important observation is that the Majorana
fields γ1, γ2, and γ3 constitute the Pauli matrices,
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We can verify that σx,y,z defined above actually satisfy the
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for energies " < !eff , where !eff is the effective SC gap
[Fig. 2(b)].

Isolated MBS !i are zero-energy superpositions of a
particle and a hole. A pair of Majoranas !1;2 may be fused

into a Dirac fermion cy ¼ ð!1 # i!2Þ=
ffiffiffi
2

p
, such that the

operator 2cyc# 1 ¼ 2i!1!2 with eigenvalues#1 and 1 in
states j0i and j1i ¼ cyj0i defines FP [29]. Thus, a spatial
overlap of two MBS hybridizes them into eigenstates of
opposite FP. In a TS wire of length LS0 , the decay distance
of the two MBS pinned at the wire ends is the effective
coherence length "eff ¼ @vF=#!eff . Their overlap will

induce a splitting %& !effe
#LS0="eff . Similarly, two MBS

at either side of a Josephson junction with phase difference
$ and transparency T will hybridize into even or odd

fermion states with energies %& !eff

ffiffiffiffi
T

p
cos$=2,

[16,17,27]. In the setup of Fig. 1, four MBS (two ‘‘inner’’
!2;3 and two ‘‘outer’’ !1;4) hybridize both through the
Josephson junction (region N) and the finite length S0

regions. The resulting eigenstates are empty and filled

states of two Dirac fermions dy1;2ð$Þ, constructed as two

$-dependent (orthogonal) superpositions of the two fermi-

ons cyin ¼ ð!2 þ i!3Þ=
ffiffiffi
2

p
and cyout ¼ ð!1 þ i!4Þ=

ffiffiffi
2

p
,

which are themselves obtained from the fusion of the inner
and outer MBS, respectively. We denote eigenenergies by
En1n2 and eigenstates as jn1n2i, where n1; n2 ¼ 0; 1 are the

occupations of fermions dy1 and d
y
2 . Two of them have even

total parity, j#ei ( j00i, j"ei ( j11i ¼ dy2d
y
1 j00i, and the

other two are odd, j#oi ( j10i ¼ dy1 j00i, j"oi ( j01i ¼
dy2 j00i [33]. En1n2ð$Þ anti-cross at $ ¼ # within same-
parity sectors [Fig. 1(b)] and, hence, the supercurrents are
2# periodic.
A 4#-periodic Josephson effect can, nevertheless, be

recovered by inducing LZ transitions with a voltage bias,
such as j#ei ! j"ei [green arrow in Fig. 1(b)] [34]. To
describe the response of a realistic biased junction, how-
ever, an extension of the simplified Majorana model above
is required. Indeed, nonadiabatic driving may also induce
inelastic transitions into delocalized states above the TS
gap [yellow arrow in Fig. 1(b)]. These latter transitions
induce an effective parity-mixing rate (yellow wiggly
arrow) which couples even and odd sectors (quasiparticle
poisoning). A proper description of such dynamics
involves a calculation of all the Andreev levels (both below
and above !eff) coupled to the continuum (above !S) of
the junction, which we develop in what follows.
Andreev levels.—The full spectrum of single-particle

eigenstates may be obtained by diagonalizing the
BdG equations for the geometry in Fig. 1(a) [23]. We
obtain HBdG ¼ 1

2

P
nðdyndn # dnd

y
n Þ"n, with eigenenergies

"nð$Þ plotted in Figs. 2(a) and 2(b) for a representative
junction. The corresponding single particle excitations,
called Andreev bound states (ABS), are defined as
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FIG. 2 (color online). Andreev bound states (ABS) for a
SS’NS’S junction with normal conductance G ¼ 0:72G0 (with
G0 ¼ 2e2=h), an induced gap !S0 ¼ 218 %eV, and wire’s length
of 4 %m (where lso ¼ 216 nm for a InSb wire). In the topologi-
cally trivial phase (a), B ¼ 0:36 meV ¼ 0:5Bc, whereas in the
nontrivial phase (b), B ¼ 1:1 meV ¼ 1:5Bc. The dashed line
denotes the wire effective gap !eff ¼ 130 %eV that separates
localized ABS from the quasicontinuum.

FIG. 1 (color online). (a) Schematics: A nanowire of length
L ¼ LS0 þ LN þ LS0 in contact with two s-wave superconduc-
tors (with gap !S), develops a proximity-induced SC gap
!S0 <!S and four Majorana modes !1;2;3;4. The transparency
of the junction can be controlled by a gate voltage Vg. (b) Energy
of the four lowest many-body states in the TS phase, as a
function of SC phase difference $ across N. They correspond
to even (solid) and odd (dashed) fillings of the two lowest ABS,
see Fig. 2(b). Note the avoided crossing of size &# at $ ¼ # and
the detachment gap &0 at $ ¼ 0.
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FIG. 2 (color online). Andreev bound states (ABS) for a
SS’NS’S junction with normal conductance G ¼ 0:72G0 (with
G0 ¼ 2e2=h), an induced gap !S0 ¼ 218 %eV, and wire’s length
of 4 %m (where lso ¼ 216 nm for a InSb wire). In the topologi-
cally trivial phase (a), B ¼ 0:36 meV ¼ 0:5Bc, whereas in the
nontrivial phase (b), B ¼ 1:1 meV ¼ 1:5Bc. The dashed line
denotes the wire effective gap !eff ¼ 130 %eV that separates
localized ABS from the quasicontinuum.

FIG. 1 (color online). (a) Schematics: A nanowire of length
L ¼ LS0 þ LN þ LS0 in contact with two s-wave superconduc-
tors (with gap !S), develops a proximity-induced SC gap
!S0 <!S and four Majorana modes !1;2;3;4. The transparency
of the junction can be controlled by a gate voltage Vg. (b) Energy
of the four lowest many-body states in the TS phase, as a
function of SC phase difference $ across N. They correspond
to even (solid) and odd (dashed) fillings of the two lowest ABS,
see Fig. 2(b). Note the avoided crossing of size &# at $ ¼ # and
the detachment gap &0 at $ ¼ 0.
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However, ac       -periodic Josephson effect is still possible,
because of non-adiabatic transition induced by ac fields
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     -periodic Josephson effect is absent for finite size systems,4�
because of admixture with two other Majorana end states

Experimentally detected ?  Rokhinson et al., Nature Physics 8, 795 (2012)

not yet convincing



Thermal Responses
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SUMMARY

 Exotic phenomena associated with Majorana fermions in SC

(i) Non-Abelian statistics

(ii) Non-local correlation and “teleportation”

(iii) Majorana fermion as “fractionalization” of electron

(iv) Thermal responses

experimental detections of (i) and (ii) are the most important future 
issues

In particular,


