

第62回トポロジカル物質科学セミナー Topological Materials Science Seminar (62)

Universal thermal Hall conductivity of

a kagomé antiferromagnet

Prof. Minoru Yamashita

Institute for Solid State Physics, Univ. of Tokyo

Place: Room 1320, Faculty of Science Bldg. #4, Hongo Campus, Univ. of Tokyo (東大本郷キャンパス理学部 4 号館 1320 号室) Date: July 2 (Monday), 2018 Time: 14:00-15:30

Abstract:

Searching for the ground state of a kagomé Heisenberg antiferromagnet (KHA) has been one of the central issues of condensed-matter physics, because the KHA is expected to host many unknown spin-liquid phases with exotic elementary excitations.

To study the elementary excitations, we investigate the longitudinal (κ_{xx}) and transverse (κ_{xy}) thermal conductivities of a new candidate of S = 1/2 kagomé antiferromagnet Ca kapellasite $(CaCu_3(OH)_6Cl_2 \cdot 0.6H_2O)$ of which the spin Hamiltonian is suggested to be well approximated to be an ideal KHA [1].

We find a clear thermal Hall signal in the spin liquid phase of $T^* < T < J/k_B$ ($T^* \sim 7$ K is the magnetic transition temperature and $J/k_B \sim 66$ K is the effective spin interaction energy). The temperature dependence of κ_{xy}/T shows a peak at $k_BT \sim J/3$, which is followed by a rapid decrease below T^* . We find that κ_{xy} is well reproduced, both qualitatively and quantitatively, by the Schwinger-boson mean-field theory with the Dzyaloshinskii-Moriya interaction of $D/J \sim 0.1$ [2]. Most remarkably, both κ_{xy} of Ca kapellasite and that of another kagomé antiferromagnet volborthite [3] are found to converge to one single curve of our Schwinger-boson calculation only by choosing J and D as fitting parameters. We further find that κ_{xy} of another kagomé compound Cd kapellasite [4] with smaller J shows a similar temperature dependence with a peak at lower temperature as expected by the Schwinger-boson calculation. This excellent agreement demonstrates not only that the thermal Hall effect in these kagomé antiferromagnets is caused by spins in the spin liquid phase, but also that κ_{xy} is given by a simple scaling function $f(k_BT/J)$, unveiling the universal $\kappa_{xy}(T)$ of KHA.

References

[1] H. Yoshida et al., J. Phys. Soc. Jpn. 86, 033704 (2017).

[2] H. Lee, J. H. Han, and P. A. Lee, Phys. Rev. B 91, 125413 (2015).

[3] D. Watanabe et al., Proc. Natl. Acad. Sci. 113, 8653-8657 (2016).

[4] R. Okuma et al., Phys. Rev. B 95, 094427 (2017).