

Anomalous Hall effects in Chiral Superfluids

Prof. James A. Sauls

Department of Physics & Astronomy Northwestern University, Evanston, USA

Place: Room 333, Department of Applied Physics, Graduate School of Engineering, Building No.3, Nagoya University

Date : November 16 (Wednesday), 2016 Time: 13:30-

Abstract:

The superfluid phases of ³He are paradigms for spontaneous symmetry breaking in quantum field theory and condensed matter physics. The microscopic physics underlying the phenomenology of ³He - that of an interacting Fermi system with strong-coupling between Fermions to *paramagnons* - provided the basic theoretical model for spin-triplet superconductivity in Sr₂RuO₄ [1]. The phases of bulk superfluid ³He are also paradigms for topological order and the subject of intense theoretical and experimental research [2]. I discuss signatures of broken space-time symmetries - particularly, parity and time-reversal (BTRP) - and the implications for topological order of chiral superfluids. I highlight signatures of BTRP in ³He-A [3], and chiral superconductors [4]. I summarize the theory for the anomalous Hall effect for electron transport in chiral superfluids, and show that the experimental results for electron transport in superfluid ³He-A provide direct evidence for the spectrum of Weyl Fermions in ³He-A [5]. I conclude with a discussion of BTRP in chiral superconductors.

[1] T. M. Rice and M. Sigrist, J. Phys. Cond. Mat., 7, L643 (1995).

[2] T. Mizushima. et al., J.Phys.Soc. Jpn. 85, 022001 (2016).

[3] H. Ikegami, Y. Tsutsumi, and K. Kono, Science **341**, 59 (2013).

[4] E. R. Schemm, et al. Science **345**, 190 (2014).

[5] O. Shevtsov and J. A. Sauls, Phys. Rev. B 96, 064511 (2016).